
Systems
• A system is a transformation from one signal (called

the input) to another signal (called the output or the

response)

• Continuous-time systems with input signal x and

output signal y (a.k.a. the response):

– y(t) = x(t) + x(t-1)

– y(t) = x2(t)

• Discrete-time system examples

– y[n] = x[n] + x[n-1]

– y[n] = x2[n]

Squaring function can be used in

sinusoidal demodulation

The average of current input and

delayed input is a simple filter

Systems

A discrete-time system is a transformation that maps an

input sequence x[n] into an output sequence y[n].

System Characteristics

1. Linear vs. non-linear

2. Causal vs. non-causal

3. Time invariant

T{}
x[n] y[n]

System Characteristics

T{}
x[n] y[n]

1. Linear vs. non-linear

2. Time invariant vs. time variant

3. Causal vs. non-causal

4. Stable vs. unstable

5. Memoryless vs. state-sensitive

6. Invertible vs. non-invertible

Gambaran Sistem Komunikasi

Digital

Transmission
Information:

- analog:BW &

dynamic range

- digital:bit rate

Maximization of

information

transferred

Transmitted power;

bandpass/baseband

signal BW

Message protection &

channel adaptation;

convolution, block

coding

M-PSK/FSK/ASK...,

depends on channel

BW & characteristics

wireline/wireless

constant/variable

linear/nonlinear

Noise

Interference

Channel

Modulator

Channel

Encoder

Source

encoder

Channel

decoder

Source

decoder

Demodulator

Information

sink

Information

source
Message

Message

estimate

Received signal

(may contain errors)
Transmitted

signal

Interleaving

Fights against burst

errors

Deinterleaving

In baseband systems

these blocks are missing

‘Baseband’
means that
no carrier
wave
modulation
is used for
transmission

Modulation/Coding Methods
• Digital PAM or Amplitude-Shift Keying

(ASK)

• Phase Modulation

• Digital Phase Modulation or Phase-Shift

Keying (PSK)

– Binary PSK (BPSK)

– Quadrature PSK (QPSK)

– Differential PSK (DPSK)

– Staggered Quadrature PSK (SQPSK)

• Quadrature Amplitude Modulation (QAM)

• Frequency-Shift Keying (FSK)

– Continuous-Phase FSK (CPFSK)

• Amplitude Modulation (AM)

• Frequency Modulation (FM)

• Pulse Width Modulation (PWM)

• Pulse Position Modulation (PPM)

• Continuous-Phase Modulation (CPM)

• Minimum-Shift Keying (MSK)

• Pulse Amplitude Modulation (PAM)

• Fixed-Length Code Word

• Variable-Length Code Word

– Entropy Coding Huffman Coding

• Variable-to-Fixed Length Code Word

– Lempel-Ziv Algorithm

• Temporal Waveform Coding

– Pulse coded modulation (PCM)
• Adaptive PCM (APCM)

– Differential PCM (DPCM)
• Adaptive DPCM (ADPCM)

– Open-loop DPCM (D*PCM)

– Delta modulation (DM) or 1-bit or 2-
level DPCM

• Linear DM (LDM)

• Adaptive DM (ADM)

• Continuously Variable Slope DM
(CVSD)

• Model-Based Source Coding

– Linear Predictive Coding (LPC)

• Spectral Waveform Coding

– Subband Coding (SBC)

– Transform Coding (TC)

Communication Systems

• Voiceband modems (56k)

• Digital subscriber line (DSL) modems

– ISDN: 144 kilobits per second (kbps)

– Business/symmetric: HDSL and HDSL2

– Home/asymmetric: ADSL and VDSL

• Cable modems

• Cell phones

– First generation (1G): AMPS

– Second generation (2G): GSM, IS-95 (CDMA)

– Third generation (3G): cdma2000, WCDMA

Multiplexing

• Time Division Multiplexing (TDM)

• Frequency Division Multiplexing (FDM)

• Code Division Multiplexing (CDM)

– Code Division Multiple Access (CDMA) or

Spread Spectrum Multiple Access (SSMA)

• Orthogonal Frequency Division

Multiplexing (OFDM)

Wireline Communications

(Gambaran Nyata)

• HDSL High bit rate 1.544 Mbps in both directions

• ADSL Asymmetric 1-10 Mbps downstream, 0.5-1 Mbps up

• VDSL Very high bit rate, 22 Mbps downstream, 3 Mbps up

Customer Premisesdownstream

upstream

Voice

Switch

Central

Office

DSLAM

ADSL

modem
ADSL

modem

Lowpass

Filter

Lowpass

Filter

P

S

T

N

Interne

t

REPRESENTASI
MACAM-MACAM

SINYAL

DI MATLAB

Signal Time Base
There are a variety of ways of generating waveforms. Most require that you begin

with a vector that represents a time base. Consider generating data with a 1000 Hz

sample frequency, for example.

>> t=(0:1000)/1000;

>> whos

Name Size Bytes Class

t 1x1001 8008 double array

The colon operator creates a 1001-element row vector that represents time from

zero to one second in steps of one millisecond. The command whos displays the

name and size of each current variable.

The transpose operator (') changes the row vector to a column vector. The

semicolon tells Matlab to compute but not to display the result.

>> t=t';

>> whos

Name Size Bytes Class

t 1001x1 8008 double array

Basic Waveform Representation

Given t you can create a sample signal y consisting of two sinusoids, one at 50 Hz

and one at 120 Hz with twice the amplitude.

>> y = sin(2*pi*50*t) + 2*sin(2*pi*120*t);

>> plot(t(1:100),y(1:100));

0 0.02 0.04 0.06 0.08 0.1
-3

-2

-1

0

1

2

3

Saving Plots

0 0.02 0.04 0.06 0.08 0.1
-3

-2

-1

0

1

2

3

Matlab Figure as Powerpoint drawing object

Edit > Copy Figure

Note: try to save plots as a metafile.

Copy Preferences

Edit > Copy Preferences

Labeling Plots

0 0.02 0.04 0.06 0.08 0.1
-3

-2

-1

0

1

2

3

time (seconds)

re
sp

on
se

sample waveform

>> xlabel('time (seconds)');

>> ylabel('response');

>> title('sample waveform');

There are a variety of commands useful in labeling

plots. Here are some examples:

More on Labeling Plots

Greek letters and mathematical symbols can be included using TeX notation.

0 0.02 0.04 0.06 0.08 0.1
-3

-2

-1

0

1

2

3

 t

re
sp

o
n
s
e

sample waveform

annotation

>> xlabel('\omega t');

>> gtext('annotation')

gtext activates a cross-hair

that allows you to position the

text on the plot.

Multi Channel Signals
Matlab represents ordinary one-dimensional sampled data signals, or sequences, as

vectors. Vectors are 1-by-n or n-by-1 arrays, where n is the number of samples in

the sequence.

Column orientation is preferable for single channel signals because it extends

naturally to the multi channel case. For multi channel data, each column of the

matrix represents one channel. Each row of such a matrix then corresponds to a

sample point.

Suppose you define a five-element column vector as follows:

>> a = [1 2 3 4 5];

>> a = a';

To duplicate column vector a into a matrix, use the following method:

>> c = a(:,ones(1,3))

c = 1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

Imported Signals: MAT file

>> load mtlb

>> specgram(mtlb,512,Fs,kaiser(500,5),475)

This is a digitized speech signal. You may play it using the command

>> sound(mtlb,Fs)

Imported Signal: ASCII file
The program datagen.cpp creates a file called sample.dat. The

data for a exponentially damped sine and cosine are calculated and

saved in three columns of numbers.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

>> load sample.dat

>> x = sample(:,1);

>> y = sample(:,2);

>> z = sample(:,3);

>> plot(x,y,x,z)

Source code: datagen.cpp
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main(int argc, char *argv[])

{

int i;

double x, y, z, ampl, phi;

const double pi = 4.0*atan(1.0);

FILE *fp;

char *filename;

filename = (argc<2? "sample.dat": argv[1]);

printf("output file: %s\n",filename);

fp = fopen(filename,"wt");

if (!fp) {

printf("error opening output file\n");

return -1;

}

for (i=0; i<=500; i++) {

x = 0.01*i;

ampl = exp(-0.2*x);

phi = 2.0*pi*x;

y = ampl*cos(phi);

z = ampl*sin(phi);

fprintf(fp,"%g %g %g\n",x,y,z);

}

fclose(fp);

return 0;

}

Matlab rect function
function y=rect(x)

%RECT function.

% RECT(X) returns a matrix whose elements are the rect of the elements

% of X, i.e.

% y = 1 if |x| < 0.5

% = 0.5 if |x| = 0.5

% = 0 if |x| > 0.5

% where x is an element of the input matrix and y is the resultant

% output element.

% Author: John Loomis 25 Feb 2000

y=zeros(size(x));

i=find(abs(x)==0.5);

y(i) = 0.5;

i=find(abs(x)<0.5);

y(i)=1.0;

2

1

2

1


1

rect(t)

t

Matlab step function
function y=step(x)

%STEP function.

% STEP(X) returns a matrix whose elements are the step of the elements

% of X, i.e.

% y = 1 if x > 0

% = 0.5 if x = 0

% = 0 if x < 0

% where x is an element of the input matrix and y is the resultant

% output element.

% Author: John Loomis 25 Feb 2000

y=zeros(size(x));

idx=find(x==0);

y(idx) = 0.5;

idx=find(x>0);

y(idx)=1.0;

1

step(t)

t0

Matlab tri function
function y=tri(x)

%TRI function.

% TRI(X) returns a matrix whose elements are the tri of the elements

% of X, i.e.

% y = 1 - |x| if |x| < 1

% = 0 if x >= 1

% where x is an element of the input matrix and y is the resultant

% output element.

% Author: John Loomis 12 Jan 2003

y=zeros(size(x));

idx=find(abs(x)<1.0);

y(idx) = 1-abs(x(idx));

1

tri(t)

-1 1 t

Matlab sinc function

function y=sinc(x)

%SINC Sin(pi*x)/(pi*x) function.

% SINC(X) returns a matrix whose elements are the sinc of the elements

% of X, i.e.

% y = sin(pi*x)/(pi*x) if x ~= 0

% = 1 if x == 0

% where x is an element of the input matrix and y is the resultant

% output element.

%

y=ones(size(x));

i=find(x);

y(i)=sin(pi*x(i))./(pi*x(i));

found in signal processing toolbox

Sinc Function
The function sinc computes the mathematical sinc function

 
x

x
x



sin
)sinc(

>> t = linspace(-5,5,500);

>> yc = sinc(t);

>> plot(t,yc);

-5 0 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Gaus Function

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

)gaus(xex 

Chirp Function
The chirp function generates a linear swept-frequency cosine signal. An optional

parameter specifies alternative sweep methods. An optional parameter phi allows

the initial phase to be specified in degrees.

To compute 2 seconds of a linear chirp signal with a sample rate of 1 kHz, that

starts at DC and crosses 150 Hz at 1 second, use

Time

F
re

q
u

e
n

c
y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

100

200

300

400

500

>> t = (0:2000)/1000;

>> y = chirp(t,0,1,150);

>> specgram(y,256,1000,256,250);

Dirichlet Function

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

The function diric computes the Dirichlet function, sometimes

called the periodic sinc or aliased sinc function.

>> t = linspace(0,4,500);

>> yd = diric(pi*t,11);

>> plot(t,yd);





),diric(nx
 
 2/sin

2/sin

xn

nx

 
,4,2,01

1
2  



x
n

x

otherwise

Pulstran Function
The pulstran function generates pulse trains from either continuous or sampled prototype

pulses.

The following example generates a pulse train consisting of the sum of multiple delayed

interpolations of a Gaussian pulse. The pulse train is defined to have a sample rate of 50

kHz, a length of 10 msec, and a pulse repetition rate of 1KHz. The array d specifies the

delay to each pulse repetition in column 1 and an optimal attenuation for each repetition in

column 2.

The pulse train is constructed by passing the name of the gauspuls function to pulstran,

along with additional parameters that specify a 10 kHz Gaussian pulse with 50% bandwidth.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

>> Fs = 50e3; % 50 kHz

>> length = 10e-3; % 10 msec

>> t = 0:1/Fs:length;

>> d = [(0:10)/1e3; 0.8.^(0:10)]';

>> yf = pulstran(t,d,'gauspuls',10e3,0.5);

>> plot(t,yf);

UKURAN

SINYAL

Signal Energy





 dttsE

2
)(

How much energy a signal has and specifically how much energy is required to

produce the signal is an important concept. Energy is a non-negative property

usually calculated from the square of something. Electric energy is the square

of the electric field (or voltage). For a sound wave it is the pressure squared.

Mathematical signals can extend to infinity and may have infinite energy.

Realistic signals associated with real events have a finite duration and a

finite energy. A concert “signal” is associated with a scheduled start and

finish time. A music CD has a start and a stop. Speech starts and stops, and

so forth.

 
n

tnxE
2

][

We often leave this out

Noise and Clutter

Signals are often associated with noise and clutter.

Background noise is a continuously present background

level, usually assumed to be a stationary (independent of

time) random (or stochastic) process. The sound of an air

conditioner or the hum of florescent lights could be

background noise. Clutter is an unwanted signal. The

sound of a cell phone conversation during a movie is

audio clutter.

In calculating signal duration and energy, we want to edit

out the clutter and either cancel the background noise or

subtract the mean noise level.

Mean Time and Duration





 dttstt

2
)(

If we consider |s(t)|2 as a density in time, the average time can be defined as.

The mean time tells us approximately when the energy is localized in time.

Duration can be measured from the standard deviation:

22  tt

 



 dttsttt

222)(

Duration can be calculated from order statistics as the range: tmax-tmin

Average Power

2
)(ts is the energy per unit time at time t, or

instantaneous power




2

1
21

2

12

)(
1 t

t
tt dtts

tt
P is the average power over

the given interval

For a sequence








2

1

21

2

12

][
1

1 n

nn

nn ns
nn

P

KUANTISASI

TERHADAP

SINYAL

Conceptual Representation of A/D

Conversion

C/D Quantizer Coder

T

)(txa][ˆ nxB][ˆ nx][nx

 





n

nTtts )(

)()(][tstxnx a 
s a-1 a-2 a-3 a-4 a-b

Signed, (b+1)-bit fixed-point fraction

2-1 2-2 2-3 2-b2-4

b

baaasx 









  222ˆ 2

2

1

1 

0.11 3/4

0.10 1/2

0.01 1/4

0.00 0

1.11 -1/4

1.10 -1/2

1.01 -3/4

1.00 -1

Typical Quantizer for A/D

Conversion

)(ˆ xQx 

x2

9


2

7


2

5


2

3


2




2

9

2

7

2

5

2

3

2



 3

 2



3



 4

2

011

010

001

000

111

110

101

100

111

110

101

100

011

010

001

100

Two’s-complement

code

Offset binary

code

2Xm

Possible Numeric

Interpretations

Binary

symbol

Numeri

c value

Symmetri

c value

0.11 3/4 7/8

0.10 1/2 5/8

0.01 1/4 3/8

0.00 0 1/8

1.11 -1/4 -1/8

1.10 -1/2 -3/8

1.01 -3/4 -5/8

1.00 -1 -7/8

No zero-step value

Example 3-Bit Quantizer

T

000

0

0

011

3

2T

100

-4

3T

110

-2

4T

011

3

5T

011

3

t

][ˆ nxB

3

2



-2

-3

-

0

-4

Quantized samples

Unquantized samples

Output of D/A converter

Output of ideal sample and hold

Original

signal

A
m

p
li

tu
d

e

Overflow Characteristics

Saturation

Zeroing

Sawtooth

Quantization

function y = qtz(in,N)

n = 2^(N-1);

y = round(in*n)/n;

% clip output at limits

max = 1 - 1/n;

idx = find(y>max);

y(idx)=max;

idx = find(y<-1);

y(idx)=-1;

clear

N = 3; % number of bits

in = -1.5 : .01 : 1.5;

out = qtz(in,N);

stairs(in,out);

grid

axis equal

>> unique(out)

ans =

-1.0000 -0.7500 -0.5000 -0.2500

0 0.2500 0.5000 0.7500

This quantizer clips out-of-range values.

(saturation)
-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Change round to floor for truncation.

Quantization Example

0 50 100 150
-1

0

1

0 50 100 150
-1

0

1

0 50 100 150
-0.2

0

0.2

0 50 100 150
-5

0

5
x 10

-3

clear

n = 0:150;

x =

0.99*cos(n/10);

subplot(4,1,1);

stem(n,x);

subplot(4,1,2);

y = qtz(x,3);

stem(n,y);

grid;

subplot(4,1,3);

stem(n,x-y);

subplot(4,1,4);

y = qtz(x,8);

stem(n,x-y);

Unquantized samples of signal 0.99 cos(n/10)

Quantized samples of original signal (3-bits)

Quantization error sequence (3-bit quantization)

Quantization error sequence (8-bit quantization)

Alan V. Oppenheim and Ronald W. Schafer with

John R. Buck, Discrete-Time Signal Processing,

Second Edition, Prentice-Hall, 1999. 194-195

Analysis of Quantization Errors

• The difference between the quantized sample x[n] and true
sample value x[n] is the quantization error:

e[n] = x[n] – x[n].

• If a linear round-off (B+1)-bit quantizer is used, then

-/2 < e[n]  /2

which holds whenever

(-Xm – /2) < x[n]  (Xm – /2)

where  is step size of the quantizer:

 = Xm/2B

• If x[n] is outside the range mentioned above, then the
quantization error is larger in magnitude than /2 and such
samples are said to be clipped.

Analysis of Quantization Errors

2
The statistical representation of quantization errors is based on the

following assumptions:

• The error sequences e[n] is a sample sequence of a stationary random

process.

• The error sequence is uncorrelated with the sequence x[n].

• The random variables of the error process are uncorrelated; i.e., the

error is a white-noise process.

• The probability distribution of the error process is a uniform over the

range of quantization error.

Additive Noise Model for

Quantizer

Quantizer
Q{.}

x[n] x[n] = Q{x[n]}

+
x[n] x[n] = x[n] + e[n]

e[n]

Quantization SNR

• The SNR ratio increases approximately 6 dB for each bit added to the word

length of the quantized samples.











2

2

10log10 SNR
e

x

















2

2
2

10 212log10
m

xB

X


for a rounding quantizer













x

mX
B


10log208.1002.6

where x
2 is the variance of the signal

If we set the range of the signal to four times the signal variance to avoid

clipping the peaks, then Xm = 4 x

25.16SNR  B

Quantization Error Observations

• In low number-bit case, the error signal is highly correlated with the

unquantized signal.

• The quantization error for high number-bit quantization is assumed to vary

randomly and is uncorrelated with the unquantized signal.

12

1 2

2

2

22 



 






deee

2



2




e

p(e)



1

12

2 22
2 m

B

e

X



For a (B+1)-bit quantizer with full-scale value Xm the noise variance or power is

Range vs. Resolution

• The trade-off between peak signal amplitude and the absolute

size of the the quantization noise is a fundamental design

decision.

• For analog signals such as speech or music, the distribution

of amplitudes tends to be concentrated about zero and falls

off rapidly with increasing amplitude.

– The probability that the magnitude of a sample will exceed 3 or 4 times the

RMS value is very low.

– For example, obtaining a signal-to-noise ratio of about 90~96 dB for use in

high quality music recording and playback requires 16-bit quantization.

– But it should be remembered that such performance is obtained only if the

input signal is carefully matched to the full-scale range of the A/D converter.

Overview of Finite-Precision Numerical Effects

• Format of Number Representation :
– Sign and Magnitude: X = 1 .b1b2…bB for X  0, - 20  10010100

– One’s Complement: X = 1 .b1b2…bB for X  0, - 20  11101011

– Two’s Complement*: X = 1 .b1b2…bB + 0 .00…01 for X < 0, - 20  11101100

• Output samples from an A/D converter are quantized and thus can be
represented by fixed-point binary numbers.
– A real number can be represented with infinite precision : such as in

two’s complement form

where Xm is an arbitrary scale factor and the bi’s are either 0 or 1.
The quantity b0 is referred to as the sign bit .









 







1
0 2

i

i

im bbXx

Overview of Finite-Precision Numerical Effects 2

• Limitation of the finite word lengths for operation

– Example: overflow effect

• If a finite number of bits (B+1) are used in quantization, then the
representation must be :

A d d it io n M u lt ip lic a t io n

B in a r y D e c im a l B in a r y D e c im a l

0 .1 1 0 1 0 .8 1 2 5 0 .1 1 0 1 0 .8 1 2 5

0 .1 0 0 1 0 .5 6 2 5 0 .1 0 0 1 0 .5 6 2 5

1 .0 1 1 0 1 .3 7 5 0 0 .0 1 1 1 0 1 0 1 0 .4 5 7 0 3 1 2 5

Bm

B

i

i

imB xXbbXxQx ˆ2][ˆ
1

0 







 





Overview of Finite-Precision Numerical Effects 3

• Limitation of the finite word lengths for quantization
– the smallest difference between numbers is

– the quantization error : e = QB[x] - x
• Quantization Forms:

– Rounding
– Value truncation
– Magnitude truncation

• Overflow Characteristics :
– Saturation or Clipping
– Zeroing
– ‘Sawtooth’ or Natural overflow

B

mX  2

Quantization errors and its statistical characterization in rounding,
truncation in 2’s complement, and truncation in sign-magnitude

quantizer.

Rounding Truncation in 2’s complement Truncation in sign-magnitude

