
Systems
• A system is a transformation from one signal (called 

the input) to another signal (called the output or the 

response)

• Continuous-time systems with input signal x and 

output signal y (a.k.a. the response):

– y(t) = x(t) + x(t-1)

– y(t) = x2(t)

• Discrete-time system examples

– y[n] = x[n] + x[n-1]

– y[n] = x2[n]

Squaring function can be used in 

sinusoidal demodulation

The average of current input and 

delayed input is a simple filter



Systems

A discrete-time system is a transformation that maps an 

input sequence x[n] into an output sequence y[n].

System Characteristics

1. Linear vs. non-linear

2. Causal vs. non-causal

3. Time invariant 

T{}
x[n] y[n]



System Characteristics

T{}
x[n] y[n]

1. Linear vs. non-linear

2. Time invariant  vs. time variant

3. Causal vs. non-causal

4. Stable vs. unstable

5. Memoryless vs. state-sensitive

6. Invertible vs. non-invertible
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Modulation/Coding Methods
• Digital PAM or Amplitude-Shift Keying 

(ASK)

• Phase Modulation

• Digital Phase Modulation or Phase-Shift 

Keying (PSK)

– Binary PSK (BPSK)

– Quadrature PSK (QPSK)

– Differential PSK (DPSK)

– Staggered Quadrature PSK (SQPSK)

• Quadrature Amplitude Modulation (QAM)

• Frequency-Shift Keying (FSK)

– Continuous-Phase FSK (CPFSK)

• Amplitude Modulation (AM)

• Frequency Modulation (FM)

• Pulse Width Modulation (PWM)

• Pulse Position Modulation (PPM)

• Continuous-Phase Modulation (CPM)

• Minimum-Shift Keying (MSK)

• Pulse Amplitude Modulation (PAM)

• Fixed-Length Code Word 

• Variable-Length Code Word

– Entropy Coding Huffman Coding

• Variable-to-Fixed Length Code Word

– Lempel-Ziv Algorithm

• Temporal Waveform Coding

– Pulse coded modulation (PCM)
• Adaptive PCM (APCM)

– Differential PCM (DPCM)
• Adaptive DPCM (ADPCM)

– Open-loop DPCM (D*PCM)

– Delta modulation (DM) or 1-bit or 2-
level DPCM

• Linear DM (LDM)

• Adaptive DM (ADM)

• Continuously Variable Slope DM 
(CVSD)

• Model-Based Source Coding

– Linear Predictive Coding (LPC)

• Spectral Waveform Coding

– Subband Coding (SBC)

– Transform Coding (TC)



Communication Systems

• Voiceband modems (56k)

• Digital subscriber line (DSL) modems

– ISDN: 144 kilobits per second (kbps)

– Business/symmetric: HDSL and HDSL2

– Home/asymmetric: ADSL and VDSL

• Cable modems

• Cell phones

– First generation (1G): AMPS

– Second generation (2G): GSM, IS-95 (CDMA)

– Third generation (3G): cdma2000, WCDMA



Multiplexing

• Time Division Multiplexing (TDM)

• Frequency Division Multiplexing (FDM)

• Code Division Multiplexing (CDM)

– Code Division Multiple Access (CDMA) or 

Spread Spectrum Multiple Access (SSMA)

• Orthogonal Frequency Division 

Multiplexing (OFDM)



Wireline Communications

(Gambaran Nyata)

• HDSL High bit rate 1.544 Mbps in both directions

• ADSL Asymmetric 1-10 Mbps downstream, 0.5-1 Mbps up

• VDSL Very high bit rate, 22 Mbps downstream, 3 Mbps up
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Signal Time Base
There are a variety of ways of generating waveforms. Most require that you begin 

with a vector that represents a time base. Consider generating data with a 1000 Hz 

sample frequency, for example.

>> t=(0:1000)/1000;

>> whos

Name      Size                   Bytes  Class

t         1x1001                  8008  double array

The colon operator creates a 1001-element row vector that represents time from 

zero to one second in steps of one millisecond. The command whos displays the 

name and size of each current variable.

The transpose operator (') changes the row vector to a column vector. The 

semicolon tells Matlab to compute but not to display the result. 

>> t=t';

>> whos

Name      Size                   Bytes  Class

t      1001x1                     8008  double array



Basic Waveform Representation

Given t you can create a sample signal y consisting of two sinusoids, one at 50 Hz 

and one at 120 Hz with twice the amplitude. 

>> y = sin(2*pi*50*t) + 2*sin(2*pi*120*t);

>> plot(t(1:100),y(1:100));
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Saving Plots
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Matlab Figure as Powerpoint drawing object

Edit > Copy Figure

Note: try to save plots as a metafile.



Copy Preferences

Edit > Copy Preferences



Labeling Plots
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>> xlabel('time (seconds)');

>> ylabel('response');

>> title('sample waveform');

There are a variety of commands useful in labeling 

plots. Here are some examples: 



More on Labeling Plots

Greek letters and mathematical symbols can be included using TeX notation.
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>> xlabel('\omega t');

>> gtext('annotation')

gtext activates a cross-hair 

that allows you to position the 

text on the plot.



Multi Channel Signals
Matlab represents ordinary one-dimensional sampled data signals, or sequences, as 

vectors. Vectors are 1-by-n or n-by-1 arrays, where n is the number of samples in 

the sequence. 

Column orientation is preferable for single channel signals because it extends 

naturally to the multi channel case. For multi channel data, each column of the 

matrix represents one channel. Each row of such a matrix then corresponds to a 

sample point. 

Suppose you define a five-element column vector as follows: 

>> a = [1 2 3 4 5];

>> a = a'; 

To duplicate column vector a into a matrix, use the following method: 

>> c = a(:,ones(1,3))

c =  1 1 1 

2 2 2 

3 3 3 

4 4 4 

5 5 5



Imported Signals: MAT file

>> load mtlb 

>> specgram(mtlb,512,Fs,kaiser(500,5),475)

This is a digitized speech signal. You may play it using the command 

>> sound(mtlb,Fs) 



Imported Signal: ASCII file
The program datagen.cpp creates a file called sample.dat. The 

data for a exponentially damped sine and cosine are calculated and 

saved in three columns of numbers. 
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>> load sample.dat

>> x = sample(:,1);

>> y = sample(:,2);

>> z = sample(:,3);

>> plot(x,y,x,z)



Source code: datagen.cpp
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main(int argc, char *argv[])

{

int i;

double x, y, z, ampl, phi;

const double pi = 4.0*atan(1.0);

FILE *fp;

char *filename;

filename = (argc<2? "sample.dat": argv[1]);

printf("output file: %s\n",filename);

fp = fopen(filename,"wt");

if (!fp) {

printf("error opening output file\n");

return -1;

}

for (i=0; i<=500; i++) {

x = 0.01*i;

ampl = exp(-0.2*x);

phi = 2.0*pi*x;

y = ampl*cos(phi);

z = ampl*sin(phi);

fprintf(fp,"%g %g %g\n",x,y,z);

}

fclose(fp);

return 0;

}



Matlab rect function
function y=rect(x)

%RECT  function.

%   RECT(X) returns a matrix whose elements are the rect of the elements 

%   of X, i.e.

%        y = 1     if |x| < 0.5

% = 0.5   if |x| = 0.5

%          = 0     if |x| > 0.5

%   where x is an element of the input matrix and y is the resultant

%   output element.  

%   Author: John Loomis 25 Feb 2000

y=zeros(size(x));

i=find(abs(x)==0.5);

y(i) = 0.5;

i=find(abs(x)<0.5);

y(i)=1.0;
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Matlab step function
function y=step(x)

%STEP  function.

%   STEP(X) returns a matrix whose elements are the step of the elements 

%   of X, i.e.

%       y  = 1     if x > 0

% = 0.5   if x = 0

%          = 0     if x < 0

%   where x is an element of the input matrix and y is the resultant

%   output element.  

%   Author: John Loomis 25 Feb 2000

y=zeros(size(x));

idx=find(x==0);

y(idx) = 0.5;

idx=find(x>0);

y(idx)=1.0;

1

step(t)

t0



Matlab tri function
function y=tri(x)

%TRI  function.

%   TRI(X) returns a matrix whose elements are the tri of the elements 

%   of X, i.e.

%        y = 1 - |x| if |x| < 1

%          = 0     if x >= 1

%   where x is an element of the input matrix and y is the resultant

%   output element.  

%   Author: John Loomis 12 Jan 2003

y=zeros(size(x));

idx=find(abs(x)<1.0);

y(idx) = 1-abs(x(idx));

1

tri(t)

-1 1 t



Matlab sinc function

function y=sinc(x)

%SINC Sin(pi*x)/(pi*x) function.

%   SINC(X) returns a matrix whose elements are the sinc of the elements 

%   of X, i.e.

%        y = sin(pi*x)/(pi*x)    if x ~= 0

%          = 1                   if x == 0

%   where x is an element of the input matrix and y is the resultant

%   output element.

%

y=ones(size(x));

i=find(x);

y(i)=sin(pi*x(i))./(pi*x(i));

found in signal processing toolbox



Sinc Function
The function sinc computes the mathematical sinc function
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>> t = linspace(-5,5,500);

>> yc = sinc(t);

>> plot(t,yc);

-5 0 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



Gaus Function
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Chirp Function
The chirp function generates a linear swept-frequency cosine signal. An optional 

parameter specifies alternative sweep methods. An optional parameter phi allows 

the initial phase to be specified in degrees.

To compute 2 seconds of a linear chirp signal with a sample rate of 1 kHz, that 

starts at DC and crosses 150 Hz at 1 second, use 
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>> t = (0:2000)/1000;

>> y = chirp(t,0,1,150);

>> specgram(y,256,1000,256,250);



Dirichlet Function
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The function diric computes the Dirichlet function, sometimes 

called the periodic sinc or aliased sinc function. 

>> t = linspace(0,4,500);

>> yd = diric(pi*t,11);

>> plot(t,yd);
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Pulstran Function
The pulstran function generates pulse trains from either continuous or sampled prototype 

pulses. 

The following example generates a pulse train consisting of the sum of multiple delayed 

interpolations of a Gaussian pulse. The pulse train is defined to have a sample rate of 50 

kHz, a length of 10 msec, and a pulse repetition rate of 1KHz. The array d specifies the 

delay to each pulse repetition in column 1 and an optimal attenuation for each repetition in 

column 2. 

The pulse train is constructed by passing the name of the gauspuls function to pulstran, 

along with additional parameters that specify a 10 kHz Gaussian pulse with 50% bandwidth.
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>> Fs = 50e3; % 50 kHz

>> length = 10e-3; % 10 msec

>> t = 0:1/Fs:length;

>> d = [ (0:10)/1e3; 0.8.^(0:10)]';

>> yf = pulstran(t,d,'gauspuls',10e3,0.5); 

>> plot(t,yf);
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Signal Energy
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How much energy a signal has and specifically how much energy is required to 

produce the signal is an important concept.  Energy is a non-negative property 

usually calculated from the  square of something.  Electric energy is the square 

of the electric field (or voltage). For a sound wave it is the pressure squared.

Mathematical signals can extend to infinity and may have infinite energy.  

Realistic signals associated with real events have a finite duration and a 

finite energy.  A concert “signal” is associated with a scheduled start and 

finish time.  A music CD has a start and a stop. Speech starts and stops,  and 

so forth.
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Noise and Clutter

Signals are often associated with noise and clutter. 

Background noise is a continuously present background 

level, usually assumed to be a stationary (independent of 

time) random (or stochastic) process. The sound of an air 

conditioner or the hum of florescent lights could be 

background noise.  Clutter is an unwanted signal. The 

sound of a cell phone conversation during a movie is 

audio clutter.

In calculating signal duration and energy, we want to edit 

out the clutter and either cancel the background noise or 

subtract the mean noise level.



Mean Time and Duration
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If we consider |s(t)|2 as a density in time, the average time can be defined as.

The mean time tells us approximately when the energy is localized in time. 

Duration can be measured from the standard deviation:
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Duration can be calculated from order statistics as the range:  tmax-tmin



Average Power

2
)(ts is the energy per unit time at time t, or 

instantaneous power
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Conceptual Representation of A/D 

Conversion

C/D Quantizer Coder
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Typical Quantizer for A/D 

Conversion
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Possible Numeric 

Interpretations

Binary 

symbol

Numeri

c value

Symmetri

c value

0.11 3/4 7/8

0.10 1/2 5/8

0.01 1/4 3/8

0.00 0 1/8

1.11 -1/4 -1/8

1.10 -1/2 -3/8

1.01 -3/4 -5/8

1.00 -1 -7/8

No zero-step value



Example 3-Bit Quantizer
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Overflow Characteristics

Saturation

Zeroing

Sawtooth



Quantization

function y = qtz(in,N)

n = 2^(N-1);

y = round(in*n)/n;

% clip output at limits

max = 1 - 1/n;

idx = find(y>max);

y(idx)=max;

idx = find(y<-1);

y(idx)=-1;

clear

N = 3; % number of bits

in = -1.5 : .01 : 1.5;

out = qtz(in,N);

stairs(in,out); 

grid

axis equal

>> unique(out)

ans =

-1.0000   -0.7500   -0.5000   -0.2500         

0    0.2500    0.5000    0.7500

This quantizer clips out-of-range values.

(saturation)
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-1

-0.5
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1

Change round to floor for truncation.



Quantization Example

0 50 100 150
-1

0

1

0 50 100 150
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-5
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x 10

-3

clear

n = 0:150;

x = 

0.99*cos(n/10);

subplot(4,1,1);

stem(n,x);

subplot(4,1,2);

y = qtz(x,3);

stem(n,y);

grid;

subplot(4,1,3);

stem(n,x-y);

subplot(4,1,4);

y = qtz(x,8);

stem(n,x-y);

Unquantized samples of signal 0.99 cos(n/10)

Quantized samples of original signal (3-bits)

Quantization error sequence (3-bit quantization)

Quantization error sequence (8-bit quantization)

Alan V. Oppenheim and Ronald W. Schafer with 

John R. Buck, Discrete-Time Signal Processing, 

Second Edition, Prentice-Hall, 1999.  194-195



Analysis of Quantization Errors

• The difference between the quantized sample x[n] and true 
sample value x[n] is the quantization error:

e[n] = x[n] – x[n].

• If a linear round-off (B+1)-bit quantizer is used, then 

-/2 < e[n]  /2

which holds whenever

(-Xm – /2) <  x[n]  (Xm – /2)

where  is step size of the quantizer:

 = Xm/2B

• If x[n] is outside the range mentioned above, then the 
quantization error is larger in magnitude than /2 and such 
samples are said to be clipped.



Analysis of Quantization Errors 

2
The statistical representation of quantization errors is based on the 

following assumptions:

• The error sequences e[n] is a sample sequence of a stationary random 

process.

• The error sequence is uncorrelated with the sequence x[n].

• The random variables of the error process are uncorrelated; i.e., the 

error is a white-noise process.

• The probability distribution of the error process is a uniform over the 

range of quantization error.



Additive Noise Model for 

Quantizer

Quantizer
Q{.}

x[n] x[n] = Q{x[n]}

+
x[n] x[n] = x[n] + e[n]

e[n]



Quantization SNR

• The SNR ratio increases approximately 6 dB for each bit added to the word 

length of the quantized samples.
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2 is the variance of the signal

If we set the range of the signal to four times the signal variance to avoid 

clipping the peaks, then Xm = 4 x

25.16SNR  B



Quantization Error Observations

• In low number-bit case, the error signal is highly correlated with the 

unquantized signal.

• The quantization error for high number-bit quantization is assumed to vary 

randomly and is uncorrelated with the unquantized signal.
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For a (B+1)-bit quantizer with full-scale value Xm the noise variance or power is



Range vs. Resolution

• The trade-off between peak signal amplitude and the absolute 

size of the the quantization noise is a fundamental design 

decision.

• For analog signals such as speech or music, the distribution 

of amplitudes tends to be concentrated about zero and falls 

off rapidly with increasing amplitude.

– The probability that the magnitude of a sample will exceed 3 or 4 times the 

RMS value is very low.

– For example, obtaining a signal-to-noise ratio of about 90~96 dB for use in 

high quality music recording and playback requires 16-bit quantization.

– But it should be remembered that such performance is obtained only if the 

input signal is carefully matched to the full-scale range of the A/D converter.



Overview of Finite-Precision Numerical Effects

• Format of Number Representation :
– Sign and Magnitude: X = 1 .b1b2…bB for X  0,  - 20  10010100

– One’s Complement:   X = 1 .b1b2…bB for X  0, - 20  11101011

– Two’s Complement*: X = 1 .b1b2…bB + 0 .00…01 for X < 0, - 20  11101100

• Output samples from an A/D converter are quantized and thus can be 
represented by fixed-point binary numbers.
– A real number can be represented with infinite precision : such as in 

two’s complement form

where Xm is an arbitrary scale factor and the bi’s are either 0 or 1.
The quantity b0 is referred to as the sign bit .









 







1
0 2

i

i

im bbXx



Overview of Finite-Precision Numerical Effects 2

• Limitation of the finite word lengths for operation

– Example: overflow effect

• If a finite number of bits (B+1) are used in quantization, then the 
representation must be :

A d d it io n M u lt ip lic a t io n

B in a r y D e c im a l B in a r y D e c im a l

0 .1 1 0 1 0 .8 1 2 5 0 .1 1 0 1 0 .8 1 2 5

0 .1 0 0 1 0 .5 6 2 5 0 .1 0 0 1 0 .5 6 2 5

1 .0 1 1 0 1 .3 7 5 0 0 .0 1 1 1 0 1 0 1 0 .4 5 7 0 3 1 2 5

Bm

B

i

i

imB xXbbXxQx ˆ2][ˆ
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Overview of Finite-Precision Numerical Effects 3

• Limitation of the finite word lengths for quantization
– the smallest difference between numbers is

– the quantization error : e = QB[x] - x
• Quantization Forms:

– Rounding
– Value truncation
– Magnitude truncation

• Overflow Characteristics :
– Saturation or Clipping
– Zeroing
– ‘Sawtooth’ or Natural overflow

B

mX  2



Quantization errors and its statistical characterization in rounding, 
truncation in 2’s complement, and truncation in sign-magnitude 

quantizer.

Rounding                  Truncation in 2’s complement   Truncation in sign-magnitude




