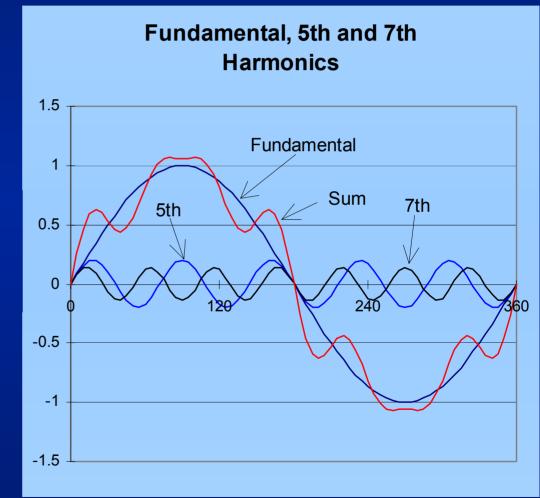


Practical Overview of Mine Power System Harmonics

Western Mining Electrical Association

Tucson, Arizona November 1999



Harmonic Topics

- What are harmonics?
- Where do they come from?
- Why worry?
- Standards.
- Solutions.

GDower SystemGE Industrial SystemsHarmonic Overviewwww.geindustrial.comWhat Are Power Line Harmonics?

 "Harmonics" are voltages and currents at frequencies that are multiples of utility power frequency.

Where Do Harmonics Come From?

- Harmonic currents result from loads that draw power in non-sine-wave format.
- These are so-called non-linear loads.

Some Specific Harmonic Sources

Linear load examples:

- Resistance devices heaters, incandescent lamps
- Induction motors
- Capacitor banks

Non-Linear load examples:

- Transformers during energization
- Arc welders and arc furnaces
- Ballasts.
- Rectifiers
- Computers, switching power supplies
- DC drives, AC Drives
- Switched cap banks

GE Industrial Systems

Power System Harmonic Overview

www.geindustrial.com Some Harmonic Producers

Harmonic Producer	Harmonic	Notes	
Transformers during energization	2nd	Gone after 0.1 sec	
Arc Welders and Furnaces	Broad spectrum, 2nd, 3rd, 4th, 5th, 7th, 11th	Filters usually included	
Ballasts, electronic	3rd, 5th, 7th	3rd cancelled in delta transf	
Plating Rectifiers	Typical 5th, 7th, 11th, 13th, etc, magnitude 1/n	Varies by number of pulses	
Computers, switching power supplies	3rd, 5th, 7th	3rd cancelled in delta transf	
DC Drives	Typical 5th, 7th, 11th, 13th, etc, magnitude 1/n	Varies by number of pulses	
AC drives	Typical 5th, 7th, 11th, 13th, etc,	Varies by type, number of pulses, system Z	
Switching Cap banks	High frequencies, depend on system	Transients, induce system resonances	

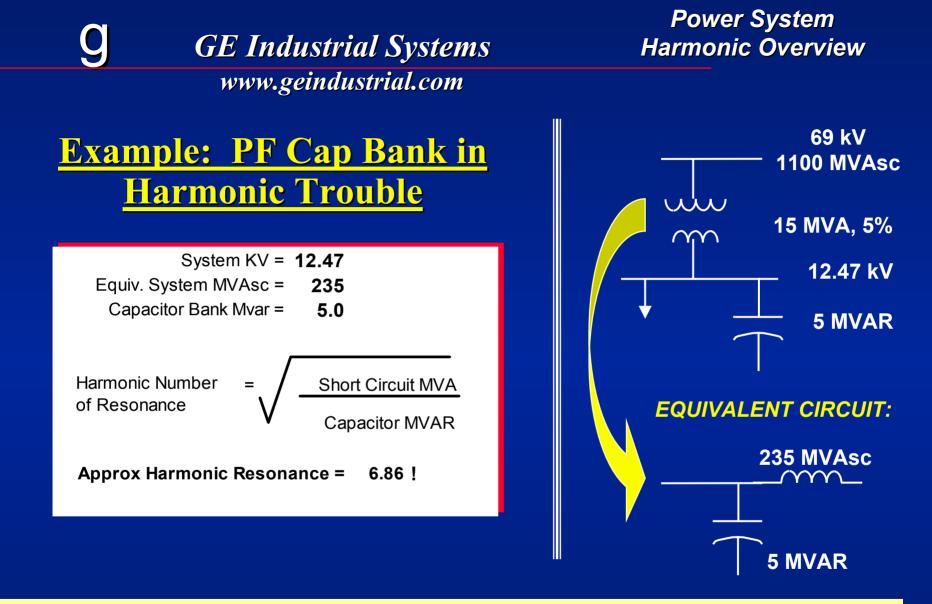
11/20/2003 10:26:46 PM

OR - What makes Power system Harmonics so bad?

- Capacitors can blow from overvoltage
- Drives can trip offline
- Transformers can overheat possibly to destruction
- Motors will heat more
- Ballasts can pop
- Electronics can malfunction

Power System GE Industrial Systems www.geindustrial.com A Closer Look: Capacitor Loss from Harmonic Overvoltages

- Every AC distribution system has distributed inductance L & capacitance C.
- Adding pf correction caps anywhere in the system will produce a resonant point with system L


Harmonic Number = of Resonance

Short Circuit MVA

Capacitor MVAR

IF THIS "HAPPENS" TO CORRESPOND TO A HARMONIC CURRENT PRESENT IN THE SYSTEM, THE RESONANCE WILL PRODUCE BIG VOLTAGES ON THE CAP BANK!

11/20/2003 10:26:46 PM

CAP BANK AND SYSTEM Z RESONATE NEAR 7th HARMONIC! ANY DRIVE OR RECTIFIERS ON THE SYSTEM COULD CAUSE HUGE OVERVOLTAGES!

11/20/2003 10:26:46 PM

Symptoms of Capacitor Series Resonance

 Voltages across caps measure higher than 10% over nameplate rating, scope shows high peaks.

*****Be sure to use True-RMS meter

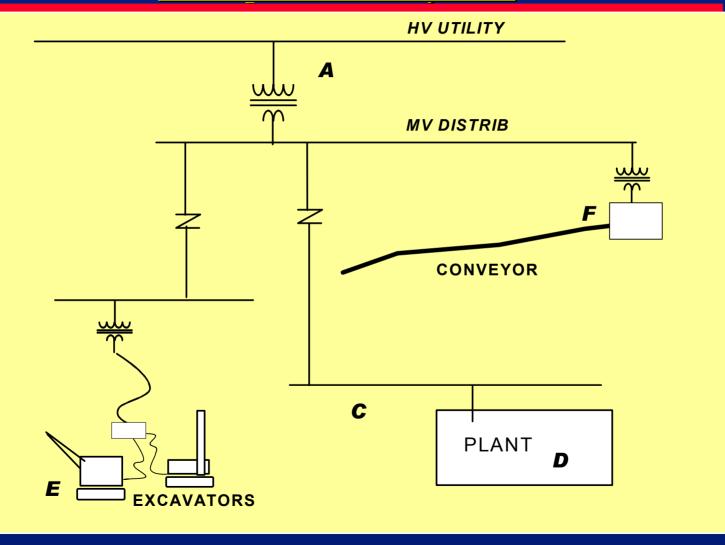
- Over-voltages can come and go with operation of harmonic producing equipment.
- Capacitor "Cans" are swollen
- Cap Fuses blow, cans fail

11/20/2003 10:26:46 PM

Fixing System Resonance Problems

- Experiment or calculate to verify problem
 - Calculate using simplified approach

Temporarily remove caps and observe effect.

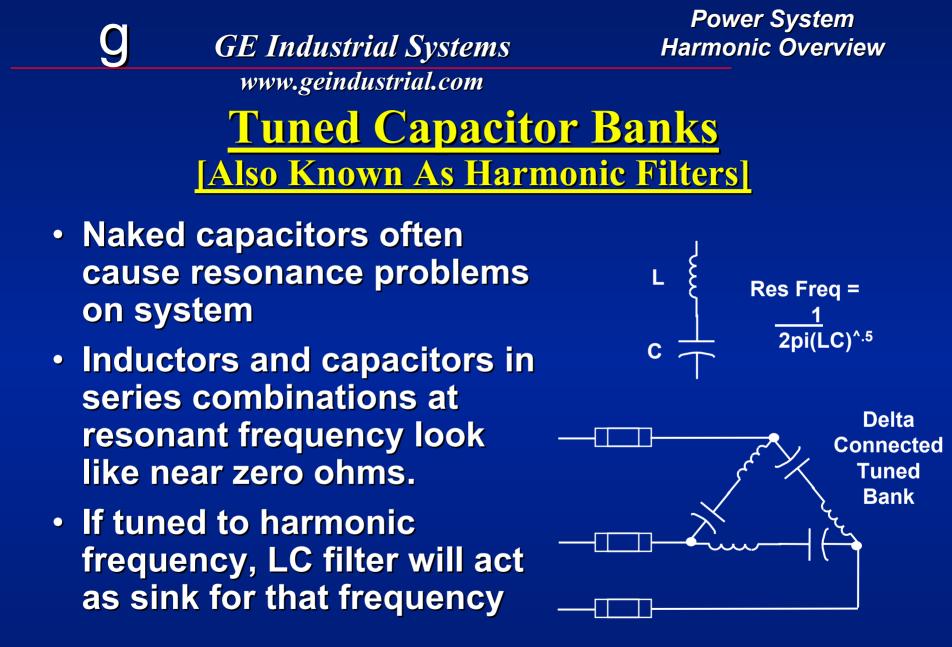

- Remove proven offending cap banks
- OR, Change size of bank
- OR, Tune the bank with inductors

g

GE Industrial Systems

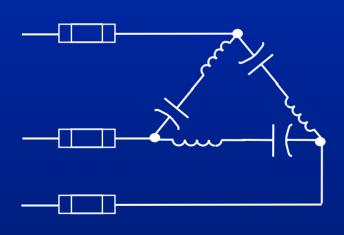
Power System Harmonic Overview

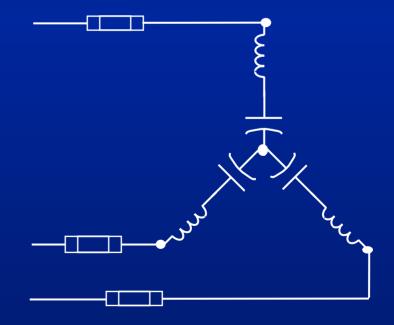
www.geindustrial.com Example Power System


11/20/2003 10:26:46 PM

The P.F. Correction Dilemma

A. Harmonic producers such as drives often need power factor correction.B. Naked capacitors will likely

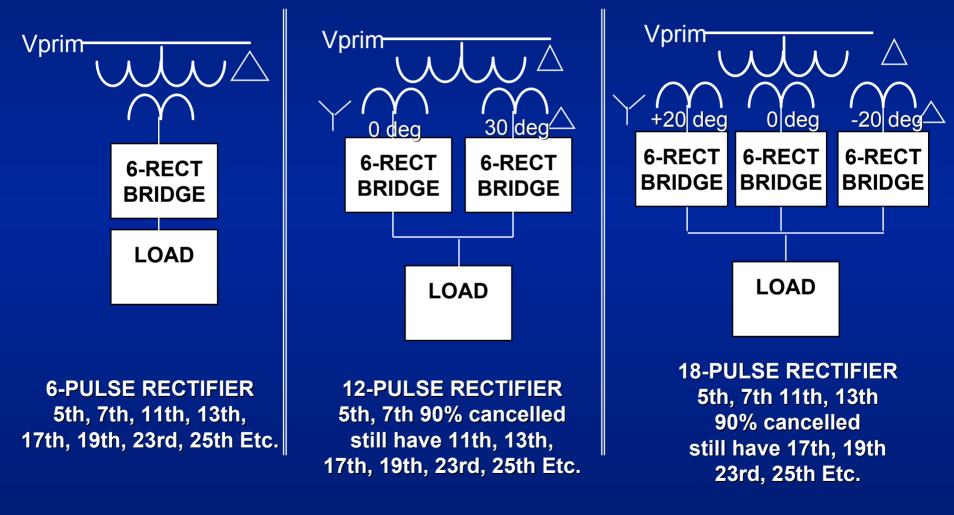

resonate and cause problems



<u>Tuned Capacitor Banks</u> <u>Configurations</u>

Delta Connected Tuned Bank - frequently used in LV filters. Wye Connected Tuned Bank - frequently used in MV filters.

wmea-harmonic-1.ppt


11/20/2003 10:26:46 PM

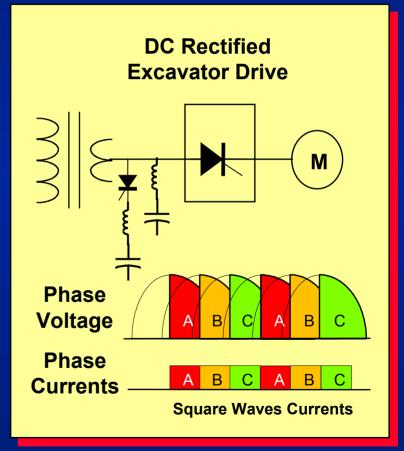
Harmonic Filters

- Medium voltage or low voltage
- Tune to below desired trap frequency [example, 4.7th]
- Rising temps move up resonance
- Filter LC is in parallel with system z causing ANOTHER resonant point
- New parallel resonant point is hopefully not on critical frequencies

Opened SystemPower SystemGE Industrial SystemsHarmonic Overviewwww.geindustrial.comMultipulse Rectifier Circuit Comparison

Plating Rectifiers

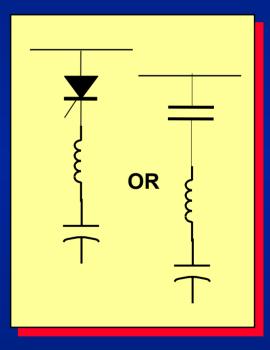
- Power range 1-10 MVA
- Thyristor [SCR] phase controlled
- Frequently 12 pulse configuration to cancel 5th and 7th harmonics
- Filters are on transformer primary side.
- Small 5th and 7th plus 11th and 13th filters.

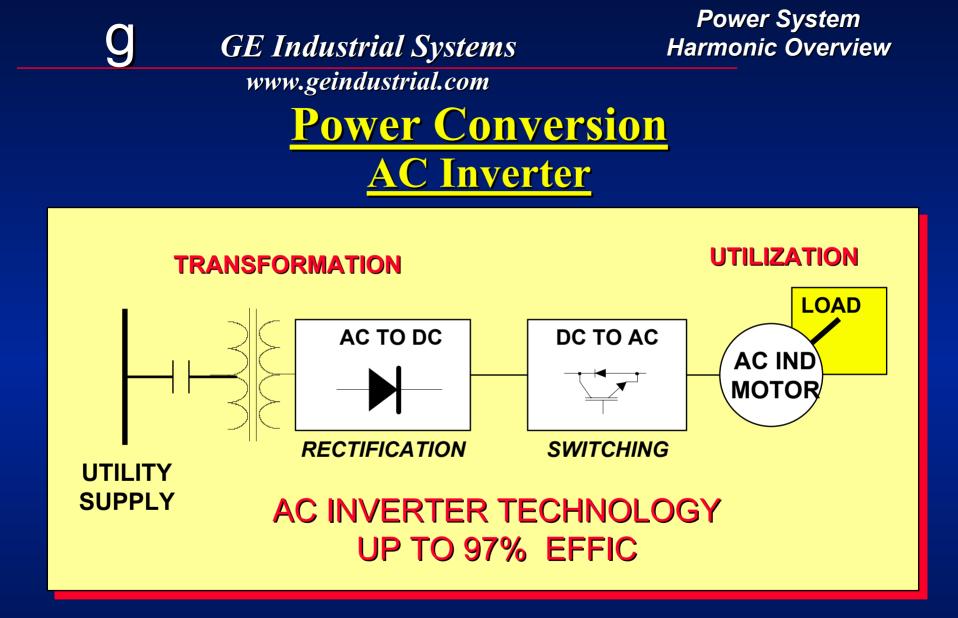


GE Industrial Systems

www.geindustrial.com

- Phase controlled SCR drives, phase amps in square wave blocks
- Usually have PF comp and Filters onboard.
- Typical 5th, 7th etc at 1/N magnitude.
- HF ringing harmonics due to switching.
- Switched caps on P&H individually tuned.
- LAG PF at stall very poor w/o caps.





Switched Capacitor Banks

- Contactors or SCR's can be used.
- Provide automatic compensation of variable PF demands
- Switched banks must be individually tuned.
- Can introduce HF ringing harmonics due to switching.

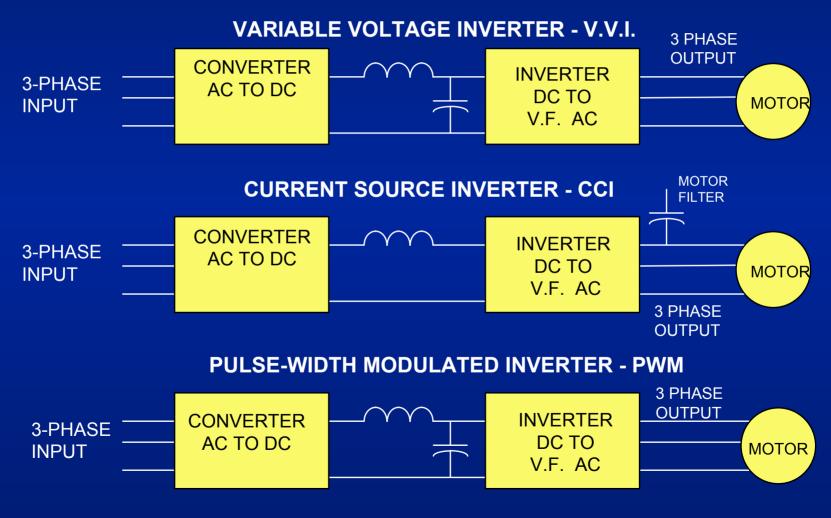
11/20/2003 10:26:46 PM

wmea-harmonic-1.ppt

Slide 21

GE Industrial Systems

www.geindustrial.com


Power System Harmonic Overview

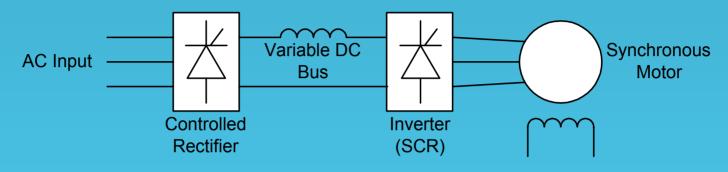
Inverter System General Block Diagram

11/20/2003 10:26:46 PM

Operation Power System GE Industrial Systems Harmonic Overview www.geindustrial.com BASIC AC DRIVE TYPES

wmea-harmonic-1.ppt

11/20/2003 10:26:46 PM

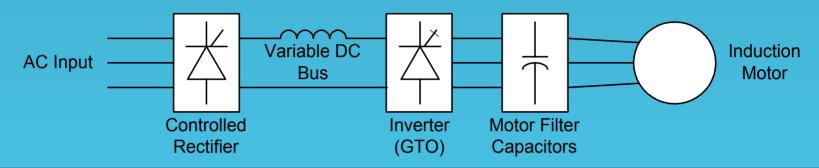


AC-VFD Current Source Drives

- All have phase-controlled front ends.
- DC Link inductors keep current continuous
- Inverter switches curent to the motor phases.
- Used for large induction or sync motors
- Looks like a DC drive to the power line, with similar harmonics.

www.geindustrial.com Load Commutated Inverter

Inverter Bridge Topology Comparison

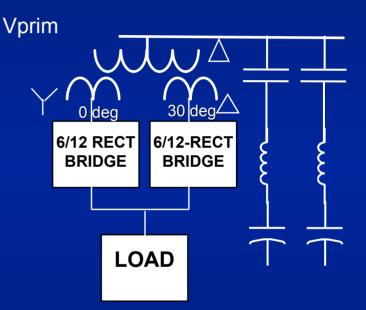

Inverter Topology	Advantages	Drawbacks	Practical Power Range
Load-commutated Current source SCR Inverter	 Low Parts Count Full Regen and DB possible Rugged Economical High HP 	 Requires a controlled front end High motor current THD Slow transient response Narrow motor frequency range Minimum Starting Torque Poor low speed performance Synchronous Motor 	Above 2 MW

www.geindustrial.com

Current Source PWM GTO Inverter

Inverter Bridge Topology Comparison

Inverter Topology	Advantages	Drawbacks	Practical Power Range
Current Source GTO PWM Inverter	 Full regen and DB possible Low parts count Low motor THD Low motor insulation stress 	 Requires a controlled front end Poor input power factor Low switching frequency Slow transient response Narrow motor frequency range Poor multi-motor operation 	2 - 15 MW



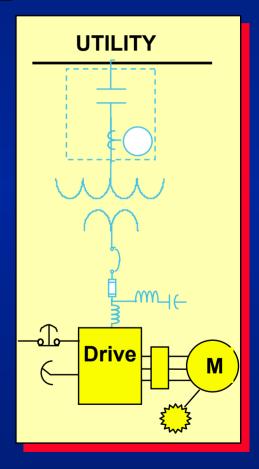
Typical Large CSI Drive PF Correction & Harmonic Filters

 Often 12 pulse AC front end is used to reduce 5th and 7th harmonic currents

www.geindustrial.com

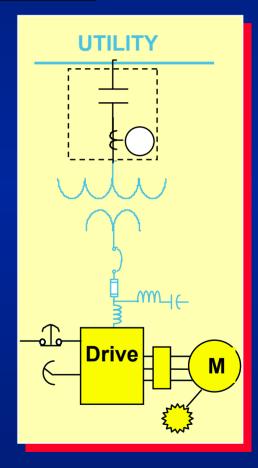
- Poor PF at low speeds requires caps to correct
- Banks must be tuned.
- Small 5th & 7th still needed, plus 11th.

12-PULSE RECTIFIER 5th, 7th 90% cancelled still have 11th, 13th, 17th, 19th, 23rd, 25th Etc.

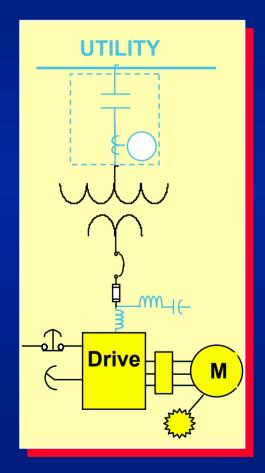

AC PWM Drives

- The most frequent AC drives in use today.
- LV or MV drives usually use diode front ends.
- Create unique PF and harmonic problems.

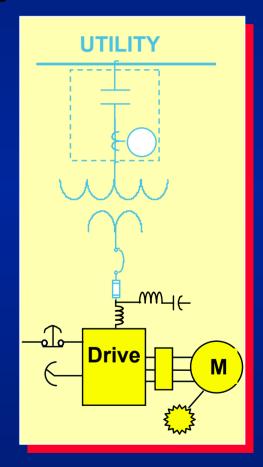
Utility Considerations

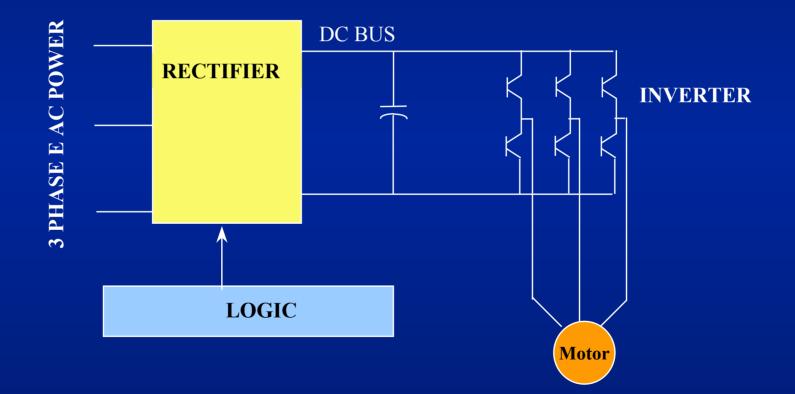

- Stiffness of supply
- Utility power level variations
- "Quality" of power as received
- Restrictions on power quality effects by new installation [power factor, harmonics]
- Impact of new loads on existing system.

Power Control and Protection


- Medium Voltage switchgear
- Unique needs of drivedominated loads.
- Metering, monitoring, and power management.

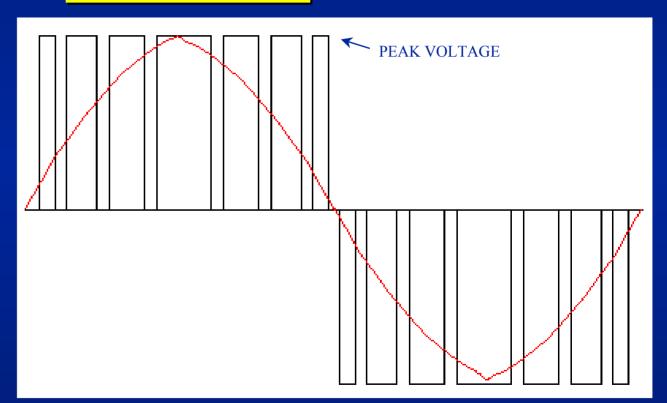
Power Distribution


- Harmonic effects on equipment
- True meaning of power factor
- Feeder sizing
- Mixture of drive and non drive loading.
- Transformer rating factors


Power Quality Issues

- Power disturbances on existing system.
- Injection of harmonics -
 - The problem & true impact
 - Specs, recommendations & regulations [IEEE-519 & others]
 - Rational solutions
- Economic tradeoffs.

PWM AC Drive Block Diagram

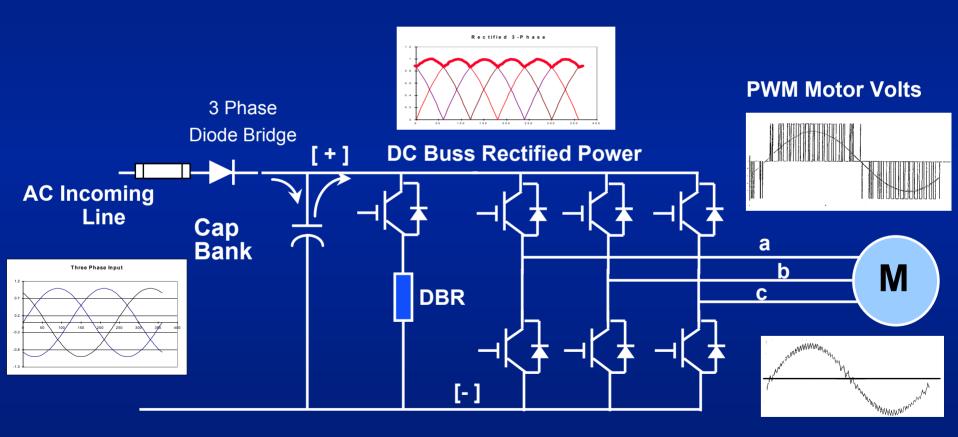

Power System GE Industrial Systems www.geindustrial.com Pulse-Width-Modulated PWM Waye Form

Voltage = The Average of the time the Voltage is on Plus the time the Voltage is Off.

The Motor tends to smooth the voltage wave

Present designs use IGBT devices to produce smooth current waves.

IGBT devices switch at rates up to 20K Hz.

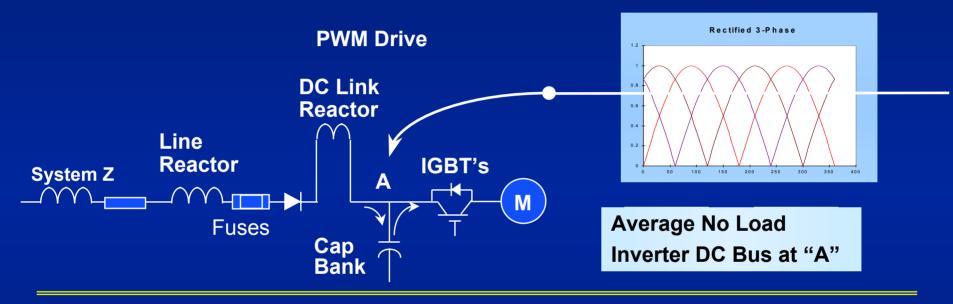


11/20/2003 10:26:46 PM

GE Industrial Systems www.geindustrial.com Power System Harmonic Overview

Low voltage PWM drive

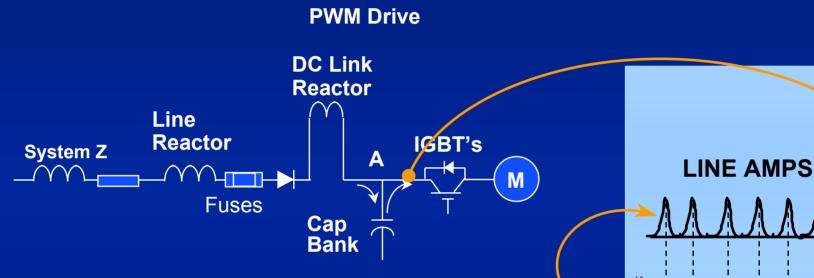
Motor Amps


Slide 35

wmea-harmonic-1.ppt

11/20/2003 10:26:46 PM

Inverter System Power Components



- General Rule: 5% Z needed in System Z + Line Reactor OR include DC Link reactor to Prevent Fuse Blowing.
- Some drives have SCR in rectifier to control charging.
- Line reactor &/or DC reactor Improve average power factor & reduce Harmonics

11/20/2003 10:26:46 PM

Inverter System AC Line Distortion

CAPACITOR CAN FILL ONLY WHEN PEAK LINE VOLTS AT A ARE ABOVE CAPACITOR VOLTS: * LINE AMPS CHARGE CAPS IN VERY UNEVEN BUMPS [NOT SINE WAVE!]

* NON SINE WAVE CURRENT IS FULL OF HARMONICS.

11/20/2003 10:26:46 PM

0.8

0.6

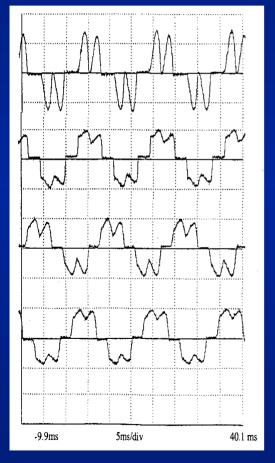
0.4

0.2

50 100 150

350

250



Displacement vs Real Power Factor

- Drives are usually specified in "displacement power factor", DPF
- DPF = cosine of phase angle between supply volts and line amps.
- For diode front end PWM, DPF > .95
- True PF = KW / KVA
- True PF can be quite bad. PF =0.60 not uncommon! Depends on Line Z.

Ower SystemGE Industrial SystemsHarmonic Overviewwww.geindustrial.comEffects Line & DC Reactors on Power Line

AC Line Amps

Base line		Baseline	DC Link Reactor	AC Line Reactors	Ac and DC Reactors
DC Link	Input KVA	5.9	5.0	5.0	5.0
Reactor	Avg Inp Volts	469	467	471	468
~	Avg Ph Amps	7.2	6.2	6.1	6.2
AC Line Reactors	Input VoltageThd	5.0%	3.2%	2.8%	2.6%
	Input Current Thd	<mark>69.1%</mark>	31.8%	34.2%	27.8%
	Input Volts Imb	0.1%	0.1%	0.1%	0.2%
✓DC Link && AC lineReactors	Input Amps Imb	4.8%	2.4%	5.5%	0.8%
	Input True PF	0.81	0.94	0.91	0.93
	Mot Amps THD	3.5%	3.0%	3.0%	3.3%

Ref Page 12-9 & 12-10 GEZ-7984E

11/20/2003 10:26:46 PM

wmea-harmonic-1.ppt

Soft Source 30 KVA, 5.5% Zt

Ge Industrial Systems *www.geindustrial.com* **Effects Of Line & DC Reactors on Power Line**

AC Line Amps

Stiff Source 180 KVA, 2% Zt

Power System

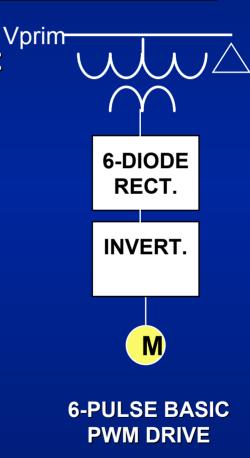
✓
DC Link Reactor
AC Line Reactors
✓DC Link && AC lineReactors

Base line

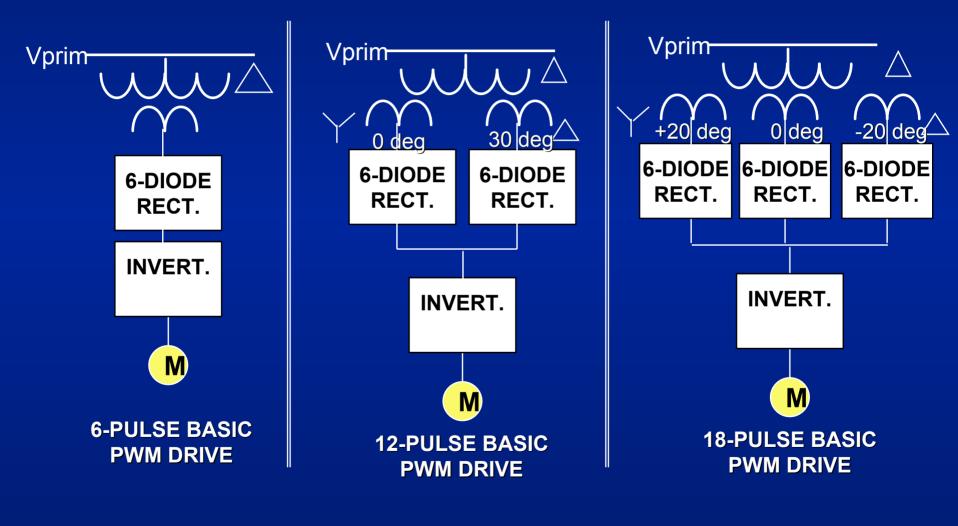
	Baseline	DC Link Reactor	AC Line Reactors	Ac and DC Reactors
Input KVA	5.2	3.8	3.2	3
Avg Inp Volts	469	467	470	469
Avg Ph Amps	6.2	4.7	4	3.7
Input VoltageThd	1.70%	1.40%	1.20%	1.30%
Input Current Thd	129.0%	<mark>54.7%</mark>	58.3%	39.4%
Input Volts Imb	0.30%	0.30%	0.40%	0.30%
Input Amps Imb	13.9%	11.6%	6.8%	4.8%
Input True PF	0.61	0.85	0.83	0.9
Mot Amps THD	4.2%	3.3%	4.4%	4.1%

Ref Page 12-9 & 12-10 GEZ-7984E

11/20/2003 10:26:46 PM

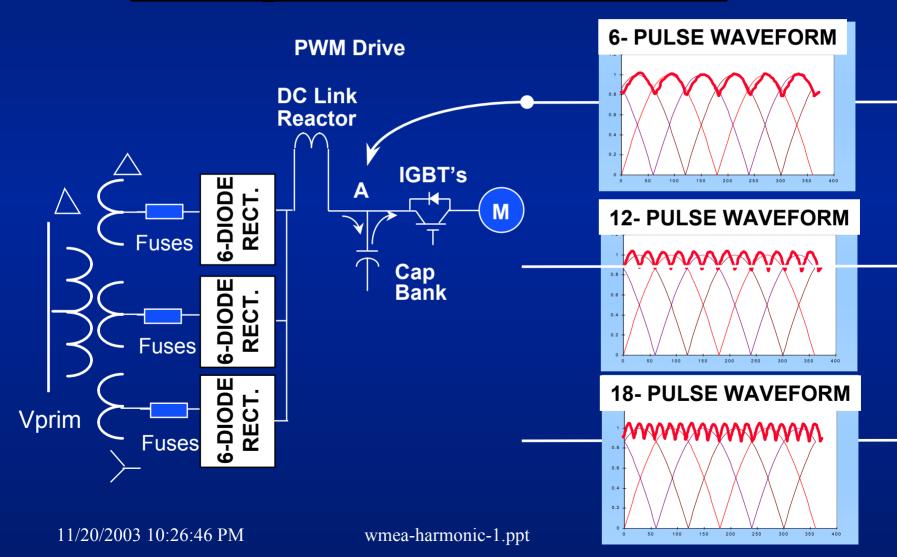

Power System Compatibility-Supply

- Fast-acting current limiting AC line fuses protect input rectifiers and limit fault current.
- Added reactance in AC line or DC link is needed when feeder transformer kVA is >10 times drive HP to prevent fuse blowing.
- System reactance [native or added] GREATLY reduces line KVA and harmonic currents



Drives "Pulse" Number Overview

- Simple full-wave drive rectifier front end has 6 diodes
- Each diode gives a pulse of output voltage for every peak of 3-phase voltage.
- Higher "pulse" drives use more diodes in rectifier section.
- Each rectifier fed from own transformer secondary



Ower System Power System GE Industrial Systems Harmonic Overview www.geindustrial.com Multipulse Drives Circuit Comparison

Multi-pulse LV PWM Drives

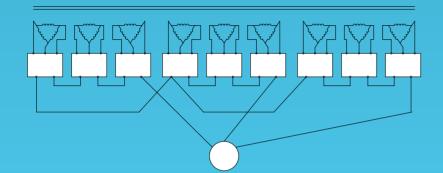
GE Industrial Systems Harmonic Overview www.geindustrial.com ***Pulse Count* Drive Comparison**

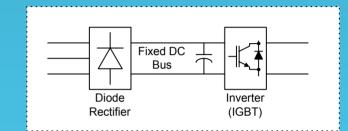
Factors	► 6 Pulse	12 Pulse	18 Pulse
▼ Cost	Lowest	More	Most
Transformer	None, or Simple [Can Share]	Special, Dedicated	Special, Dedicated
Harmonics [drive only]	Large TDD	11-17 % TDD, 90% of 5th & 7th cancel	<5 % TDD, 90% of 5th to 13th cancel
Complexity / Parts Count	Simplest	More	Most
Potential Reliability	Most	Less	Least

11/20/2003 10:26:46 PM

wmea-harmonic-1.ppt

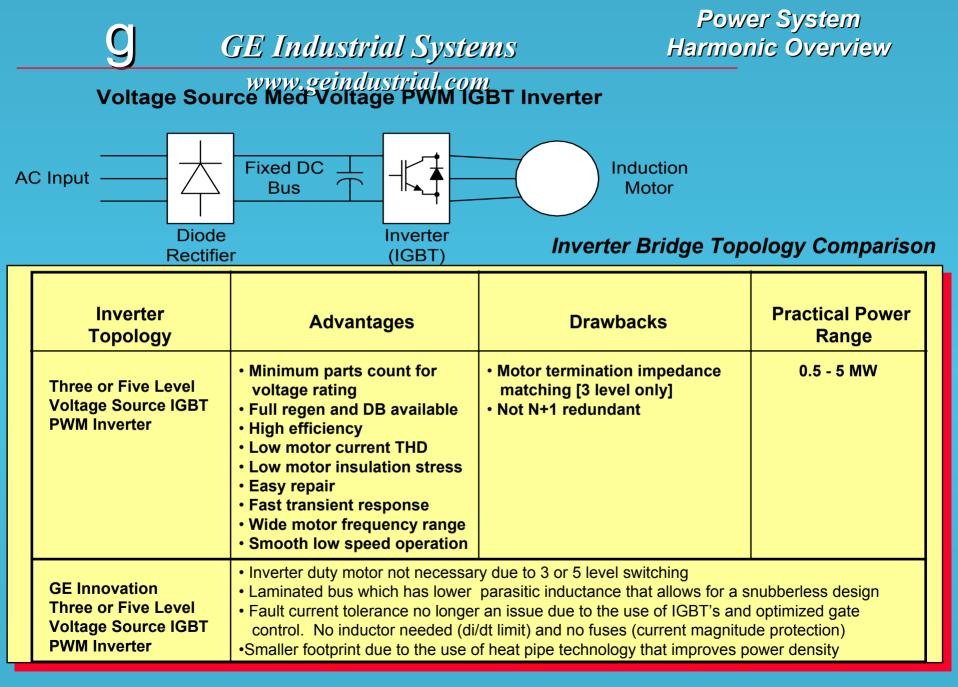
Power System




GE Industrial Systems

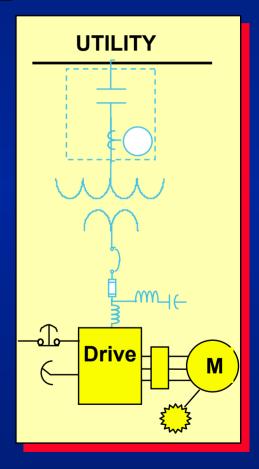
Power System Harmonic Overview

www.geindustrial.com


Multi-level Voltage Source IGBT PWM Inverter

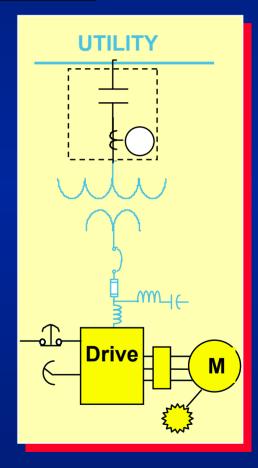
		Inverter Bridge Topology Comparison			
Inverter Topology	Advantages	Drawbacks	Practical Power Range		
Multi-level Voltage Source IGBT PWM Inverter	 Low motor current THD Low motor insulation stress Partial N+1 redundancy available Easy repair Fast transient response Wide motor frequency range High power factor Low power system harmonics 	 No regen or DB possible Large parts count Reduced efficiency (many series IGBTs and diodes) Special transformer required Larger footprint in high HP 	0.5 - 5 MW		

11/20/2003 10:26:46 PM

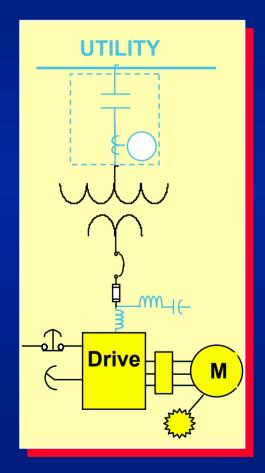


11/20/2003 10:26:46 PM

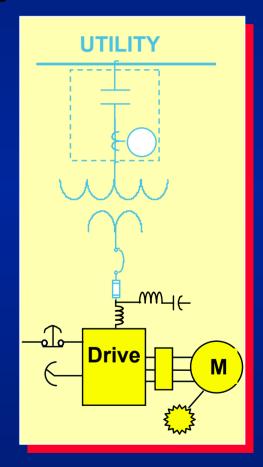
Utility Considerations


- Stiffness of supply
- Utility power level variations
- "Quality" of power as received
- Restrictions on power quality effects by new installation [power factor, harmonics]
- Impact of new loads on existing system.

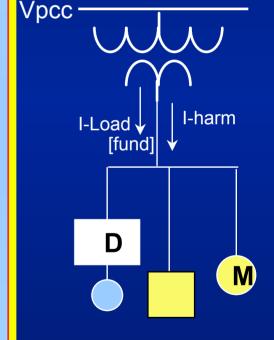
Power Control and Protection


- Medium Voltage switchgear
- Unique needs of drivedominated loads.
- Metering, monitoring, and power management.

Power Distribution


- Harmonic effects on equipment
- True meaning of power factor
- Feeder sizing
- Mixture of drive and non drive loading.
- Transformer rating factors

Power Quality Issues


- Power disturbances on existing system.
- Injection of harmonics -
 - The problem & true impact
 - Specs, recommendations & regulations [IEEE-519 & others]
 - Rational solutions
- Economic tradeoffs.

GE Industrial Systems Harmonic Overview www.geindustrial.com IEEE 519-1992 Table 10.3 I_{TDD} Limits

Maximum Harmonic Curent Distortion in % of I-Load

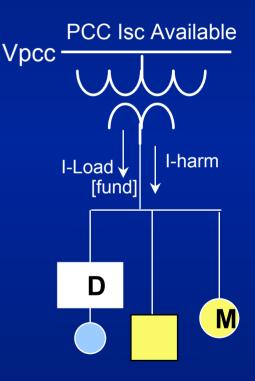
Isc to I-load Ratio	h < 11		h = 17 to <23		h = 35 & up	TDD %
< 20	4.0	2.0	1.5	0.6	0.3	5.0
20 < 50	7.0	3.5	2.5	1.0	0.5	8.0
50 < 100	10.0	4.5	4.0	1.5	0.7	12.0
100 < 1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

PCC lsc Available

Power System

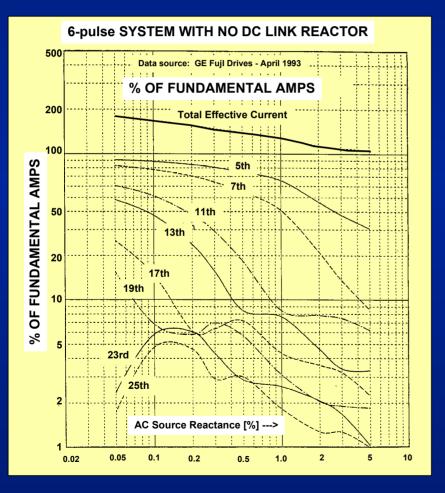
Notes: Even Harmonics limited to 25% of the harmonic level

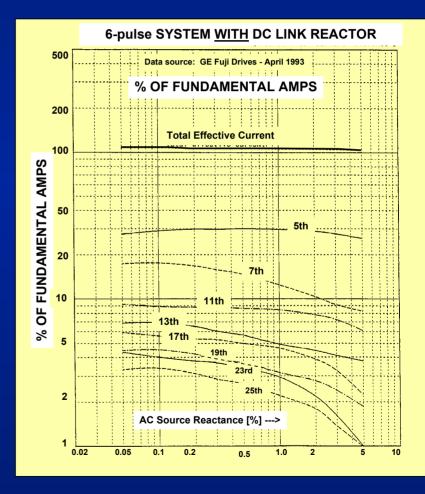
TDD = Total Demand Disortion %, based on maximum demand current at the point of common coupling [PCC]. **Isc** = Maximum Short Circuit current or kVA at the PCC


I-load = Fundamental freqency load current or kVA at the PCC

IEEE 519-1992 Table 11.2 V_{THD} Limits

- Voltage Distortion Limits for Individual Harmonic Number: < 3.0%
- Total Harmonic Voltage Distortion
 [V_{THD}] Limits for all harmonics:
 < 5.0%
- Voltage distortion is what is passed on to other equipment & utility.
- Voltage distortion depends on both injected current and source Z.
- THD within user system is separate concern, but not utility concern.

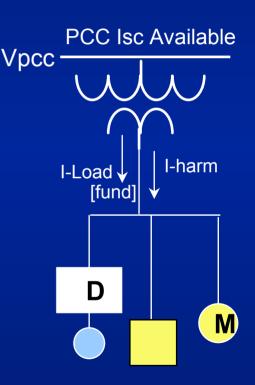




G GE Industrial Systems www.geindustrial.com

Power System Harmonic Overview

Typical Inverter Line Side % Current Harmonics



11/20/2003 10:26:46 PM

Harmonic Calculations

- Consider both drives and linear loads.
 - TDD per IEEE is a % of total kva, including non-VFD motors
- Demand distortion is not instantaneous number, but based on meter kva-hours.
- Must define a Point of Common Coupling: where currents sum.
- Computer programs are available [see www.transcoil.com].
- If you ignore harmonics, then breakers, transformers and feeders may be under-sized.

GE Industrial Systems www.geindustrial.com

Power System Harmonic Overview

Simplified AC PWM Harmonic Analysis

🛒 Analyzer								_ 🗆 ×
<u>F</u> ile <u>H</u> elp								
🗅 🚅 🖶 🎒 🗛	I _{SC} T1 T	2 🧖						
Enter Project Name							ALYZ	EK
V _{THD1} = 3.32 PCC1	% I _{TF}	id = 13.3%	I _{sc/IL} = 24	1.9			<u>C</u> alculate	
			_/					
318 kva 1500				Juur		<u>ش</u> ليت		
×z 5.5	╡╷		Ę.					
Vout 480	= 추	本	수 슈	[†] م	추 추	추 추	추 뉴 추	≂
	Γ	T	Υ'	Т				
Isc	٥	Õ	ڻ ٢	Ģ	Ô	Ô	Q	Q
	No Filtering		Harmonic Guard™	Harmonic Guard+™	12 Pulse △/△Y Transformer	12 Pulse KMP Transformer	12 Pulse KMP+ XFMR Filter	Linear Load
Total HP of Linear Load								600
Total HP of AC Drive Without DC Bus Choke	0	300	0	0	0	0	0	
Total HP of AC Drive With DC Bus Choke	0	200	0	0	0	0	0	
								A V

TCI-Analyzer

- PWM VFD's with diode front ends
- Simple First-cut calculations.
- Allows rapid comparisons of drive & filter combinations
- Program available for purchase & download at www.transcoil.com

11/20/2003 10:26:46 PM

GE Industrial Systems www.geindustrial.com

Power System Harmonic Overview

MV Filter- Metal Enclosed

- Air core or iron core inductors
- Oil filled
 capacitors
- L-C pairs Tuned to harmonics to be absorbed
- Switchgear and protection needed.

www.geindustrial.com

GE Industrial Systems

Stack-Rack Filter Banks Open Construction

- Air core core inductors
- Oil filled
 capacitors
- L-C pairs Tuned to harmonics to be absorbed
- Switchgear and protection needed.

9 MVAR Bank, 12.47 KV, Tuned to 5th harmonic [5/98]

11/20/2003 10:26:46 PM

Typical Costs for MV Harmonic Banks

- Fixed = \$30 / KVAR, Auto = \$35-60 / KVAR
- Not including:
 - ✤ Taps for iron core reactors (typically 35% adder to cost & size)
 - * Breakers
 - * Disconnect switches, fused or unfused
 - Vacuum switches
 - Thermal protection for reactors (CT's & relays)
 - Unbalance/Blown Fuse detection (CT's & relays)
 - ***** Automatic banks (controllers, switches & reactors for each step)
 - Ground switches
 - Ventilation/heaters
 - * Provisions for Kirk key interlocks

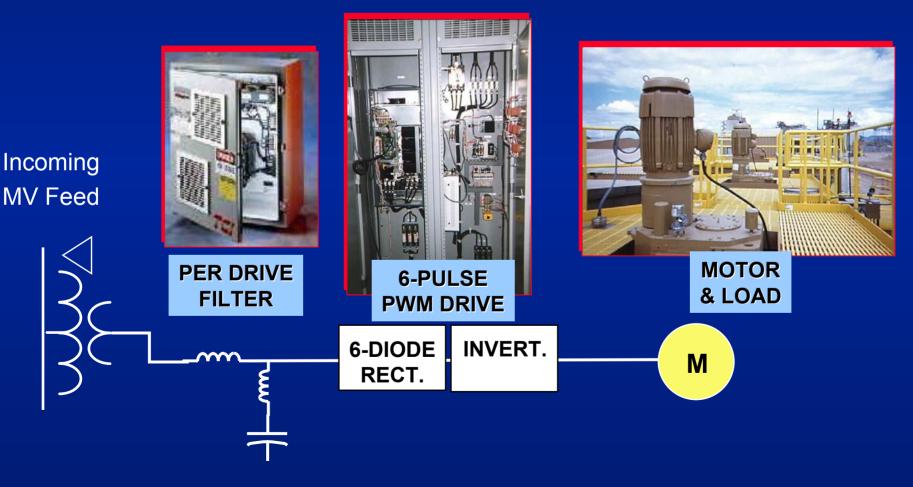
Typical Costs for LV Harmonic Banks

- Fixed = \$70 to \$180 / KVAR, Auto = \$85 to \$150 / KVAR, 480 volt or 600 volt
- Including:

Iron core reactors for each step

Contactors for each step

* Breakers

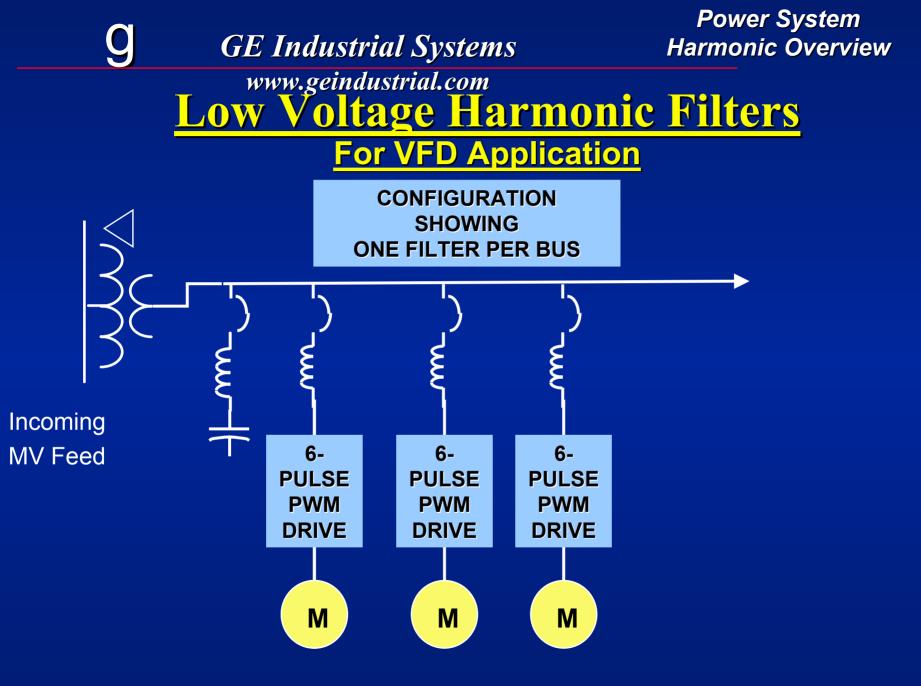

Thermal protection for reactors (CT's & relays)

Unbalance/Blown Fuse detection (CT's & relays)

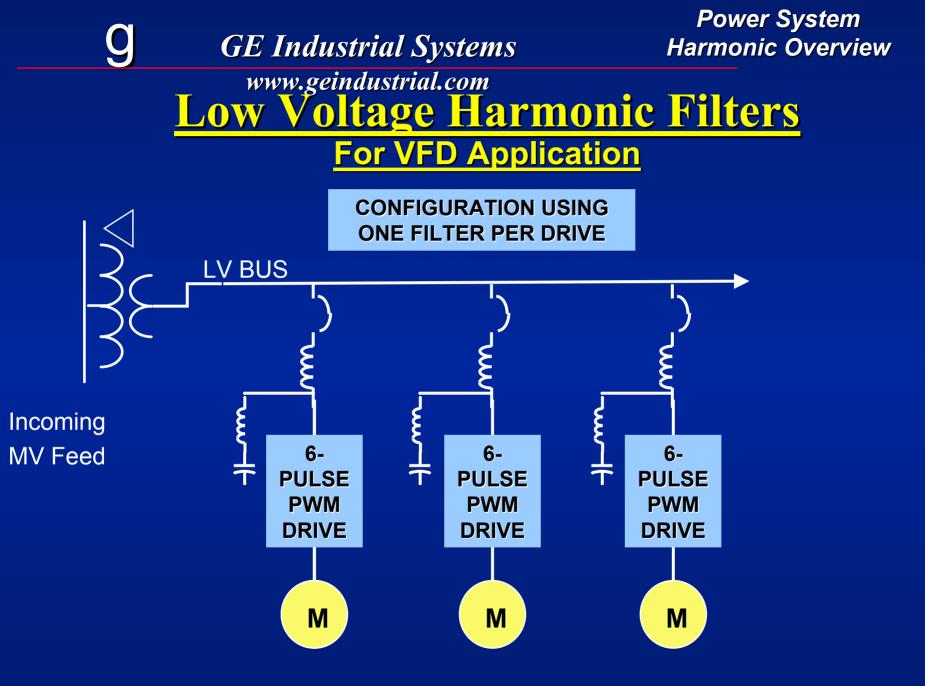
*** Ventilation/heaters**

Low Voltage Harmonic Filters For VFD Application

11/20/2003 10:26:46 PM



www.geindustrial.com


GE Industrial Systems

<u>Harmonic Correction:</u> Rational Approaches

- Correct known problems, use consultation if needed.
- Local filters at the source.
- System level filters.
- Minimize injection of currents by equipment selection & application.
- Maintain standards to prevent future problems.

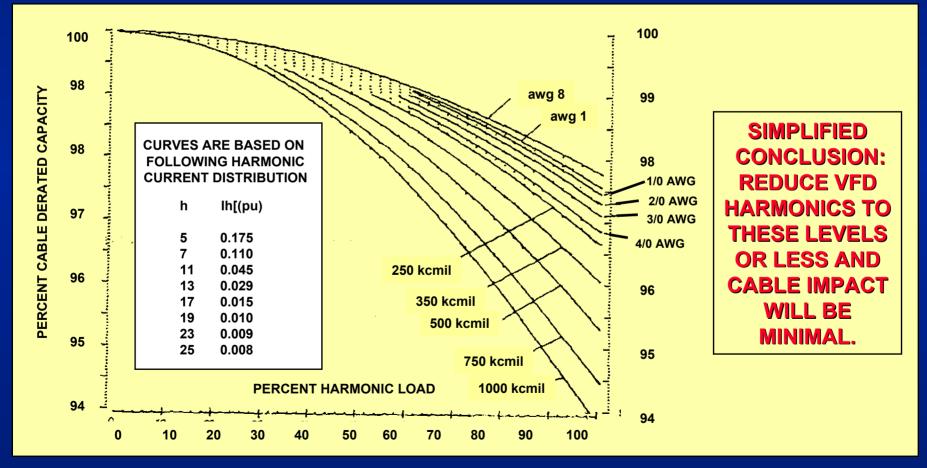
11/20/2003 10:26:46 PM

Openation Power System **GE Industrial Systems** Harmonic Overview www.geindustrial.com Harmonic Distance

<u>High/Med. Voltage Harmonic Filters</u>

www.geindustrial.com **Power System Compatibility- Feeder Equipment**

GE Industrial Systems


- Breakers, transformers, and cable must be rated to carry full kVA.
- Transformers need to be "drive isolation" rated with proper "K" factor.
 *K 13 = 50% NL loads, K30 = 100%
- Equipment size may be minimized by reducing harmonics by using:
 *Line & Link Reactors
 *Filters
 *Multipulse rectifier drives

www.geindustrial.com

GE Industrial Systems

wmea-harmonic-1.ppt

11/20/2003 10:26:46 PM

GE Industrial Systems www.geindustrial.com Power System Harmonic Overview

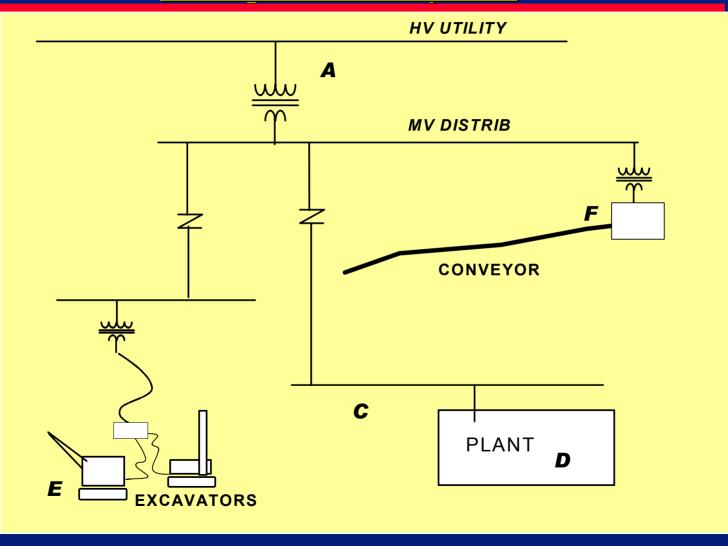
Harmonic Solutions

•Understanding
•Planning
•Studies & surveys
•Filters
•Low impact equip

Harmonic Surveys

- What are they?
- When are they needed?
 Serious & widespread symptoms
 Starting fresh
 To fix utility complaints
- Localized or system wide?

Harmonic Surveys


Do-it-yourself Approach
* Measurement locations
* Instrument availability, setup, calibration.
* Data interpretation
When do you need professional help?

g

GE Industrial Systems

Power System Harmonic Overview

www.geindustrial.com Example Power System

11/20/2003 10:26:46 PM

<u>Using Harmonic Survey Results</u>

- Recognize what data means trouble, and what can be ignored.
- Know the industry standards.
- Know how to apply standards with practical results in sight at lowest cost.

- Use common sense approach don't be pushed into excessive action.
- Recognize symptoms of harmonic problems.
- Use design tools to do simple calcs and planning
- Consult reliable systems analysis sources when help is needed.

- Use common sense approach don't be pushed into excessive action.
- Recognize symptoms of harmonic problems.
- Use design tools to do simple calcs and planning
- Consult reliable systems analysis sources when help is needed.