
William Stallings

Computer Organization

and Architecture

Chapter 11

CPU Structure

and Function

CPU Structure

CPU must:

Fetch instructions

Interpret instructions

Fetch data

Process data

Write data

Registers

CPU must have some working space (temporary
storage)

Called registers

Number and function vary between processor
designs

One of the major design decisions

Top level of memory hierarchy

User Visible Registers

General Purpose

Data

Address

Condition Codes

General Purpose Registers (1)

May be true general purpose

May be restricted

May be used for data or addressing

Data

Accumulator

Addressing

Segment

General Purpose Registers (2)

Make them general purpose

Increase flexibility and programmer options

Increase instruction size & complexity

Make them specialized

Smaller (faster) instructions

Less flexibility

How Many GP Registers?

Between 8 - 32

Fewer = more memory references

More does not reduce memory references and
takes up processor real estate

See also RISC

How big?

Large enough to hold full address

Large enough to hold full word

Often possible to combine two data registers

C programming

double int a;

long int a;

Condition Code Registers

Sets of individual bits

e.g. result of last operation was zero

Can be read (implicitly) by programs

e.g. Jump if zero

Can not (usually) be set by programs

Control & Status Registers

Program Counter

Instruction Decoding Register

Memory Address Register

Memory Buffer Register

Revision: what do these all do?

Program Status Word

A set of bits

Includes Condition Codes

Sign of last result

Zero

Carry

Equal

Overflow

Interrupt enable/disable

Supervisor

Supervisor Mode

Intel ring zero

Kernel mode

Allows privileged instructions to execute

Used by operating system

Not available to user programs

Other Registers

May have registers pointing to:

Process control blocks (see O/S)

Interrupt Vectors (see O/S)

N.B. CPU design and operating system design
are closely linked

Example Register

Organizations

Foreground Reading

Stallings Chapter 11

Manufacturer web sites & specs

Instruction Cycle

Revision

Stallings Chapter 3

Indirect Cycle

May require memory access to fetch operands

Indirect addressing requires more memory
accesses

Can be thought of as additional instruction
subcycle

Instruction Cycle with Indirect

Instruction Cycle State

Diagram

Data Flow (Instruction Fetch)

Depends on CPU design

In general:

Fetch

PC contains address of next instruction

Address moved to MAR

Address placed on address bus

Control unit requests memory read

Result placed on data bus, copied to MBR, then to IR

Meanwhile PC incremented by 1

Data Flow (Data Fetch)

IR is examined

If indirect addressing, indirect cycle is
performed

Right most N bits of MBR transferred to MAR

Control unit requests memory read

Result (address of operand) moved to MBR

Data Flow (Fetch Diagram)

Data Flow (Indirect Diagram)

Data Flow (Execute)

May take many forms

Depends on instruction being executed

May include

Memory read/write

Input/Output

Register transfers

ALU operations

Data Flow (Interrupt)

 Simple

 Predictable

 Current PC saved to allow resumption after interrupt

 Contents of PC copied to MBR

 Special memory location (e.g. stack pointer) loaded to
MAR

 MBR written to memory

 PC loaded with address of interrupt handling routine

 Next instruction (first of interrupt handler) can be
fetched

Data Flow (Interrupt Diagram)

Prefetch

Fetch accessing main memory

Execution usually does not access main memory

Can fetch next instruction during execution of
current instruction

Called instruction prefetch

Improved Performance

But not doubled:

Fetch usually shorter than execution

Prefetch more than one instruction?

Any jump or branch means that prefetched
instructions are not the required instructions

Add more stages to improve performance

Pipelining

Fetch instruction

Decode instruction

Calculate operands (i.e. EAs)

Fetch operands

Execute instructions

Write result

Overlap these operations

Timing of Pipeline

Branch in a Pipeline

Dealing with Branches

Multiple Streams

Prefetch Branch Target

Loop buffer

Branch prediction

Delayed branching

Multiple Streams

Have two pipelines

Prefetch each branch into a separate pipeline

Use appropriate pipeline

Leads to bus & register contention

Multiple branches lead to further pipelines being
needed

Prefetch Branch Target

Target of branch is prefetched in addition to
instructions following branch

Keep target until branch is executed

Used by IBM 360/91

Loop Buffer

Very fast memory

Maintained by fetch stage of pipeline

Check buffer before fetching from memory

Very good for small loops or jumps

c.f. cache

Used by CRAY-1

Branch Prediction (1)

Predict never taken

Assume that jump will not happen

Always fetch next instruction

68020 & VAX 11/780

VAX will not prefetch after branch if a page fault
would result (O/S v CPU design)

Predict always taken

Assume that jump will happen

Always fetch target instruction

Branch Prediction (2)

Predict by Opcode

Some instructions are more likely to result in a jump
than thers

Can get up to 75% success

Taken/Not taken switch

Based on previous history

Good for loops

Branch Prediction (3)

Delayed Branch

Do not take jump until you have to

Rearrange instructions

Branch Prediction State

Diagram

Foreground Reading

Processor examples

Stallings Chapter 11

Web pages etc.

