
William Stallings

Computer Organization

and Architecture

Chapter 12

Reduced Instruction

Set Computers

Major Advances in

Computers(1)

The family concept

IBM System/360 1964

DEC PDP-8

Separates architecture from implementation

Microporgrammed control unit

Idea by Wilkes 1951

Produced by IBM S/360 1964

Cache memory

IBM S/360 model 85 1969

Major Advances in

Computers(2)

Solid State RAM

(See memory notes)

Microprocessors

Intel 4004 1971

Pipelining

Introduces parallelism into fetch execute cycle

Multiple processors

The Next Step - RISC

Reduced Instruction Set Computer

Key features

Large number of general purpose registers

or use of compiler technology to optimize register
use

Limited and simple instruction set

Emphasis on optimising the instruction pipeline

Comparison of processors

 CISC RISC Superscalar

 IBM DEC VAX Intel Motorola MIPS IBM Intel

 370/168 11/780 486 88000 R4000 RS/6000 80960

 1973 1978 1989 1988 1991 1990 1989

 No. of instruction

 208 303 235 51 94 184 62

 Instruction size (octets)

 2-6 2-57 1-11 4 32 4 4 or 8

 Addressing modes

 4 22 11 3 1 2 11

 GP Registers

 16 16 8 32 32 32 23-256

 Control memory (k bytes) (microprogramming)

 420 480 246 0 0 0 0

Driving force for CISC

Software costs far exceed hardware costs

Increasingly complex high level languages

Semantic gap

Leads to:

Large instruction sets

More addressing modes

Hardware implementations of HLL statements

e.g. CASE (switch) on VAX

Intention of CISC

Ease compiler writing

Improve execution efficiency

Complex operations in microcode

Support more complex HLLs

Execution Characteristics

Operations performed

Operands used

Execution sequencing

Studies have been done based on programs
written in HLLs

Dynamic studies are measured during the
execution of the program

Operations

Assignments

Movement of data

Conditional statements (IF, LOOP)

Sequence control

Procedure call-return is very time consuming

Some HLL instruction lead to many machine
code operations

Relative Dynamic Frequency

Dynamic Machine Instruction Memory Reference

Occurrence (Weighted) (Weighted)

Pascal C Pascal C Pascal C

Assign 45 38 13 13 14 15

Loop 5 3 42 32 33 26

Call 15 12 31 33 44 45

If 29 43 11 21 7 13

GoTo - 3 - - - -

Other 6 1 3 1 2 1

Operands

Mainly local scalar variables

Optimisation should concentrate on accessing
local variables

Pascal C Average

Integer constant 16 23 20

Scalar variable 58 53 55

Array/structure 26 24 25

Procedure Calls

Very time consuming

Depends on number of parameters passed

Depends on level of nesting

Most programs do not do a lot of calls followed
by lots of returns

Most variables are local

(c.f. locality of reference)

Implications

Best support is given by optimising most used
and most time consuming features

Large number of registers

Operand referencing

Careful design of pipelines

Branch prediction etc.

Simplified (reduced) instruction set

Large Register File

Software solution

Require compiler to allocate registers

Allocate based on most used variables in a given
time

Requires sophisticated program analysis

Hardware solution

Have more registers

Thus more variables will be in registers

Registers for Local Variables

Store local scalar variables in registers

Reduces memory access

Every procedure (function) call changes locality

Parameters must be passed

Results must be returned

Variables from calling programs must be
restored

Register Windows

Only few parameters

Limited range of depth of call

Use multiple small sets of registers

Calls switch to a different set of registers

Returns switch back to a previously used set of
registers

Register Windows cont.

Three areas within a register set

Parameter registers

Local registers

Temporary registers

Temporary registers from one set overlap parameter
registers from the next

This allows parameter passing without moving data

Overlapping Register Windows

Circular Buffer diagram

Operation of Circular Buffer

When a call is made, a current window pointer
is moved to show the currently active register
window

If all windows are in use, an interrupt is
generated and the oldest window (the one
furthest back in the call nesting) is saved to
memory

A saved window pointer indicates where the
next saved windows should restore to

Global Variables

Allocated by the compiler to memory

Inefficient for frequently accessed variables

Have a set of registers for global variables

Registers v Cache

 Large Register File Cache

 All local scalars Recently used local scalars

 Individual variables Blocks of memory

 Compiler assigned global variables Recently used global variables

 Save/restore based on procedure Save/restore based on
nesting caching algorithm

 Register addressing Memory addressing

Referencing a Scalar -

Window Based Register File

Referencing a Scalar - Cache

Compiler Based Register

Optimization

 Assume small number of registers (16-32)

 Optimizing use is up to compiler

 HLL programs have no explicit references to registers

usually - think about C - register int

 Assign symbolic or virtual register to each candidate
variable

 Map (unlimited) symbolic registers to real registers

 Symbolic registers that do not overlap can share real
registers

 If you run out of real registers some variables use
memory

Graph Coloring

 Given a graph of nodes and edges

 Assign a color to each node

 Adjacent nodes have different colors

 Use minimum number of colors

 Nodes are symbolic registers

 Two registers that are live in the same program
fragment are joined by an edge

 Try to color the graph with n colors, where n is the
number of real registers

 Nodes that can not be colored are placed in memory

Graph Coloring Approach

Why CISC (1)?

Compiler simplification?

Disputed…

Complex machine instructions harder to exploit

Optimization more difficult

Smaller programs?

Program takes up less memory but…

Memory is now cheap

May not occupy less bits, just look shorter in
symbolic form

More instructions require longer op-codes

Register references require fewer bits

Why CISC (2)?

Faster programs?

Bias towards use of simpler instructions

More complex control unit

Microprogram control store larger

thus simple instructions take longer to execute

It is far from clear that CISC is the appropriate
solution

RISC Characteristics

One instruction per cycle

Register to register operations

Few, simple addressing modes

Few, simple instruction formats

Hardwired design (no microcode)

Fixed instruction format

More compile time/effort

RISC v CISC

Not clear cut

Many designs borrow from both philosophies

e.g. PowerPC and Pentium II

RISC Pipelining

Most instructions are register to register

Two phases of execution

I: Instruction fetch

E: Execute

ALU operation with register input and output

For load and store

I: Instruction fetch

E: Execute

Calculate memory address

D: Memory

Register to memory or memory to register operation

Effects of Pipelining

Optimization of Pipelining

Delayed branch

Does not take effect until after execution of following
instruction

This following instruction is the delay slot

Normal and Delayed Branch

Address Normal Delayed Optimized

100 LOAD X,A LOAD X,A LOAD X,A

101 ADD 1,A ADD 1,A JUMP 105

102 JUMP 105 JUMP 105 ADD 1,A

103 ADD A,B NOOP ADD A,B

104 SUB C,B ADD A,B SUB C,B

105 STORE A,Z SUB C,B STORE A,Z

106 STORE A,Z

Use of Delayed Branch

Controversy

 Quantitative

compare program sizes and execution speeds

 Qualitative

examine issues of high level language support and use of VLSI
real estate

 Problems

No pair of RISC and CISC that are directly comparable

No definitive set of test programs

Difficult to separate hardware effects from complier effects

Most comparisons done on “toy” rather than production
machines

Most commercial devices are a mixture

Required Reading

Stallings chapter 12

Manufacturer web sites

