Chapter 2

Perkembangan Komputer

ENIAC - background

\mathscr{H} Electronic Numerical Integrator And Computer \&Eckert and Mauchly
HUniversity of Pennsylvania
\mathscr{H} Trajectory tables for weapons
\& Started 1943
\&Finished 1946
囚Too late for war effort
\& Used until 1955

ENIAC - details

HDecimal (not binary)
$\mathscr{H} 20$ accumulators of 10 digits
HProgrammed manually by switches
\& 18,000 vacuum tubes
\& 30 tons
\& 15,000 square feet
\& 140 kW power consumption
\& 5,000 additions per second

von Neumann/Turing

H Stored Program concept
\& Main memory storing programs and data
\& ALU operating on binary data
\& Control unit interpreting instructions from memory and executing
$\not \mathscr{H}$ Input and output equipment operated by control unit
\& Princeton Institute for Advanced Studies
囚IAS
H Completed 1952

Structure of von Nuemann machine

IAS－details

\＆ 1000×40 bit words
囚Binary number
囚 2×20 bit instructions
\mathscr{H} Set of registers（storage in CPU）
\triangle Memory Buffer Register
囚Memory Address Register
囚Instruction Register
©Instruction Buffer Register
囚Program Counter
®Accumulator
EI 356 A Arsimbultiplier Quotient

Structure of IAS - detail

Commercial Computers

\& 1947 - Eckert-Mauchly Computer Corporation \&UNIVAC I (Universal Automatic Computer) \&US Bureau of Census 1950 calculations HBecame part of Sperry-Rand Corporation HLate 1950s - UNIVAC II
©Faster
囚More memory

IBM

\mathscr{H} Punched-card processing equipment $\mathscr{H} 1953$ - the 701
®IBM's first stored program computer
囚Scientific calculations
$\mathscr{H} 1955$ - the 702
©Business applications
\& Lead to 700/7000 series

Transistors

HReplaced vacuum tubes
\&Smaller
H Cheaper
HLess heat dissipation
HSolid State device
\mathscr{H} Made from Silicon (Sand)
\&Invented 1947 at Bell Labs
\&William Shockley et al.

Transistor Based Computers

\mathscr{H} Second generation machines \&NCR \& RCA produced small transistor machines \&IBM 7000
\& DEC-1957
囚Produced PDP-1

Microelectronics

\& Literally - "small electronics"
\mathscr{H} computer is made up of gates, memory cells and interconnections
\mathscr{H} These can be manufactured on a semiconductor
He.g. silicon wafer

Generations of Computer

If Vacuum tube－1946－1957
\＆Transistor－1958－1964
\＆Small scale integration－ 1965 on
囚Up to 100 devices on a chip
\＆Medium scale integration－to 1971
区100－3，000 devices on a chip
\＆Large scale integration－1971－1977
区 $3,000-100,000$ devices on a chip
\＆Very large scale integration－ 1978 to date
囚100，000－100，000，000 devices on a chip
\＆Ultra large scale integration
区Over 100，000，000 devices on a chip

Moore's Law

\& Increased density of components on chip
\& Gordon Moore - cofounder of Intel
H Number of transistors on a chip will double every year
\& Since 1970's development has slowed a little
囚 Number of transistors doubles every 18 months
\& Cost of a chip has remained almost unchanged
\& Higher packing density means shorter electrical paths, giving higher performance
\& Smaller size gives increased flexibility
\& Reduced power and cooling requirements
\& Fewer interconnections increases reliability

Growth in CPU Transistor Count

IBM 360 series

\＆ 1964
HReplaced（\＆not compatible with） 7000 series
\mathscr{H} First planned＂family＂of computers
QSimilar or identical instruction sets
囚Similar or identical O／S
囚Increasing speed
®Increasing number of I／O ports（i．e．more terminals）
®Increased memory size
囚Increased cost
$\mathscr{4}$ Multiplexed switch structure

DEC PDP-8

$\mathscr{H} 1964$
H First minicomputer (after miniskirt!)
\& Did not need air conditioned room
\mathscr{H} Small enough to sit on a lab bench
\& $\$ 16,000$
囚\$100k+ for IBM 360
\& Embedded applications \& OEM \&BUS STRUCTURE

DEC - PDP-8 Bus Structure

Semiconductor Memory

\& 1970
\&FFairchild
HSize of a single core

®i.e. 1 bit of magnetic core storage
\% Holds 256 bits
HNon-destructive read
\mathscr{H} Much faster than core
\& Capacity approximately doubles each year

Intel

\& 1971-4004

- First microprocessor
$\triangle A l l$ CPU components on a single chip
Q4 bit
H Followed in 1972 by 8008
®8 bit
囚Both designed for specific applications
\& 1974-8080
囚Intel's first general purpose microprocessor

Speeding it up

HPipelining
\&On board cache
\& On board L1 \& L2 cache \&Branch prediction
\& Data flow analysis
\&Speculative execution

Performance Mismatch

H Processor speed increased
\& Memory capacity increased
H Memory speed lags behind processor speed

DRAM and Processor Characteristics

Trends in DRAM use

Solutions

HIncrease number of bits retrieved at one time
®Make DRAM "wider" rather than "deeper"
HChange DRAM interface
®Cache
HReduce frequency of memory access
©More complex cache and cache on chip
HIIncrease interconnection bandwidth
囚High speed buses
\triangle Hierarchy of buses

Internet Resources

\& http://www.intel.com/
©Search for the Intel Museum
\&http://www.ibm.com
\&http://www.dec.com
\& Charles Babbage Institute
\& PowerPC
\& Intel Developer Home

