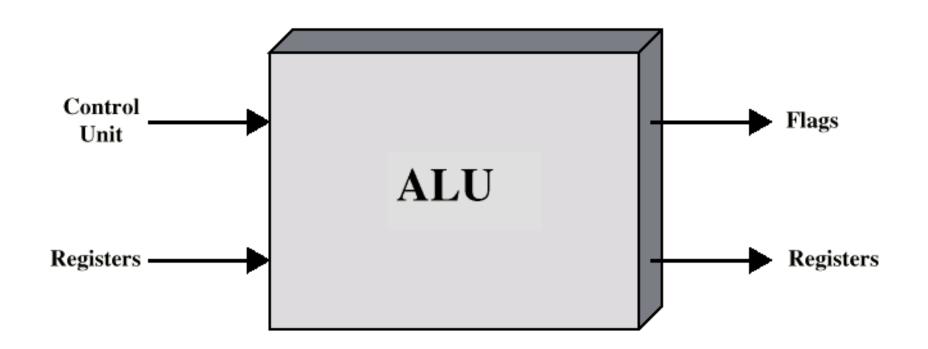
William Stallings Computer Organization and Architecture

Chapter 8 Computer Arithmetic

Arithmetic & Logic Unit

- **#** Does the calculations
- #Everything else in the computer is there to service this unit
- **#**Handles integers
- ****** May handle floating point (real) numbers
- **#** May be separate FPU (maths co-processor)

ALU Inputs and Outputs



Integer Representation

- **#**Only have 0 & 1 to represent everything
- #Positive numbers stored in binary
 - △e.g. 41=00101001
- ★ No minus sign

 Output

 Description

 How the property of the property o
- No period
- **X**Sign-Magnitude
- **X**Two's compliment

Sign-Magnitude

- **X**Left most bit is sign bit
- **#** 0 means positive
- **#**1 means negative
- $\Re + 18 = 00010010$
- \Re -18 = 10010010
- **#** Problems
 - Need to consider both sign and magnitude in arithmetic

Two's Compliment

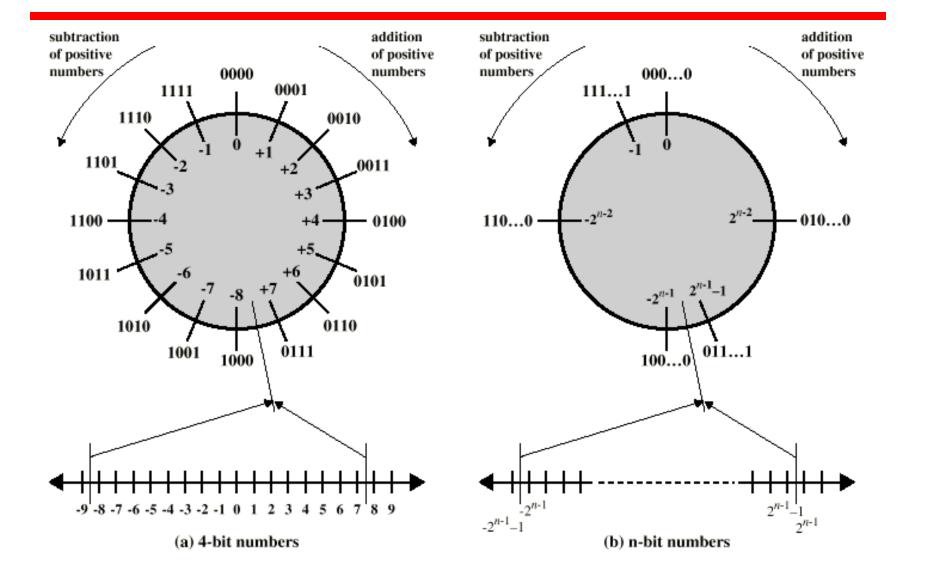
$$\Re +3 = 00000011$$
 $\Re +2 = 00000010$
 $\Re +1 = 00000001$
 $\Re +0 = 00000000$
 $\Re -1 = 11111111$
 $\Re -2 = 11111110$
 $\Re -3 = 11111101$

Benefits

- **#**One representation of zero
- ******Arithmetic works easily (see later)
- ****** Negating is fairly easy
 - $\triangle 3 = 00000011$

 - △Add 1 to LSB 11111101

Geometric Depiction of Twos Complement Integers



Negation Special Case 1

```
# 0 = 00000000

#Bitwise not 11111111

#Add 1 to LSB +1

#Result 100000000

#Overflow is ignored, so:

#-0 = 0 \sqrt{\phantom{a}}
```

Negation Special Case 2

```
10000000
\#-128 =
               01111111
# bitwise not

★ Add 1 to LSB
                      +1
# Result
                10000000
#So:
\# -(-128) = -128 X
# Monitor MSB (sign bit)
X It should change during negation
```

Range of Numbers

#8 bit 2s compliment

$$\triangle + 127 = 011111111 = 2^7 - 1$$

$$\triangle$$
 -128 = 10000000 = -2⁷

#16 bit 2s compliment

$$\triangle$$
+32767 = 011111111 11111111 = 2^{15} - 1

$$\triangle$$
 -32768 = 100000000 00000000 = -2¹⁵

Conversion Between Lengths

#Positive number pack with leading zeros

$$\Re + 18 = 00010010$$

****** Negative numbers pack with leading ones

$$\Re -18 = 10010010$$

$$\Re -18 = 111111111 10010010$$

\#i.e. pack with MSB (sign bit)

Addition and Subtraction

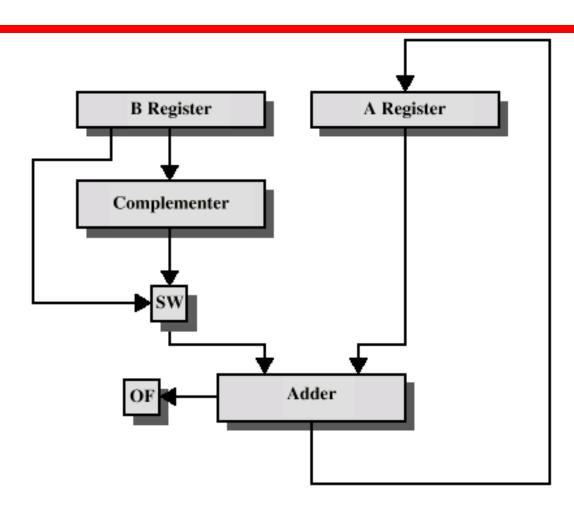
- ****Normal binary addition**
- ****** Monitor sign bit for overflow

**Take twos compliment of substahend and add to minuend

$$△$$
i.e. a - b = a + (-b)

#So we only need addition and complement circuits

Hardware for Addition and Subtraction



OF = overflow bit

SW = Switch (select addition or subtraction)

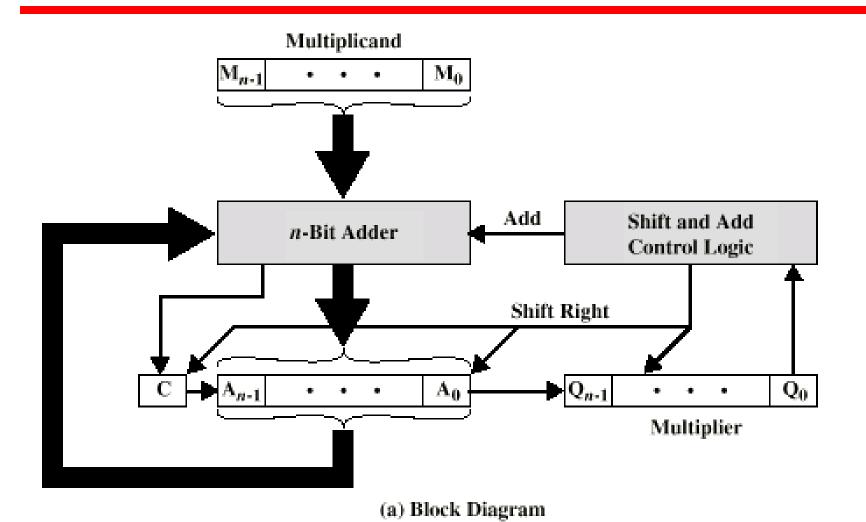
Multiplication

- **#** Complex
- ****** Work out partial product for each digit
- **X** Take care with place value (column)
- ******Add partial products

Multiplication Example

```
1011 Multiplicand (11 dec)
\mathbb{H}
     x 1101
\mathbb{H}
               Multiplier (13 dec)
H
        1011 Partial products
H
     0000
               Note: if multiplier bit is 1 copy
\mathbb{H}
    1011
                multiplicand (place value)
# 1011
               otherwise zero
# 10001111 Product (143 dec)
X Note: need double length result
```

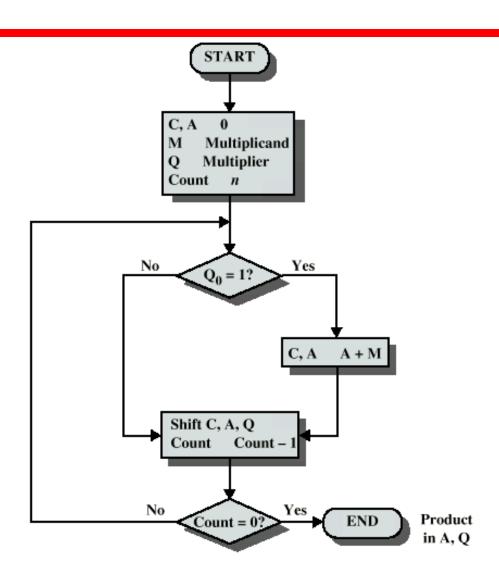
Unsigned Binary Multiplication



Execution of Example

C 0	A 0000	Q 1101	M 1011	Initial	Values
0	1011	1101	1011	Add	First
	0101	1110	1011	Shift	Cycle
0	0010	1111	1011	Shift }	Second Cycle
0	1101	1111	1011	Add	Third
	0110	1111	1011	Shift	Cycle
1	0001	1111	1011	Add }	Fourth
	1000	1111	1011	Shift	Cycle

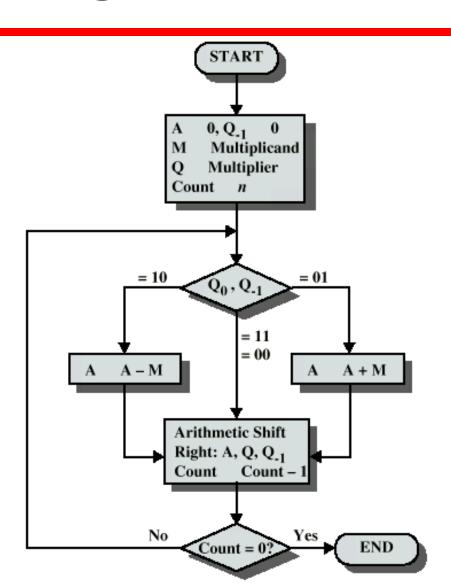
Flowchart for Unsigned Binary Multiplication



Multiplying Negative Numbers

- **#**This does not work!
- **Solution** 1
 - Convert to positive if required
- **Solution 2**

Booth's Algorithm



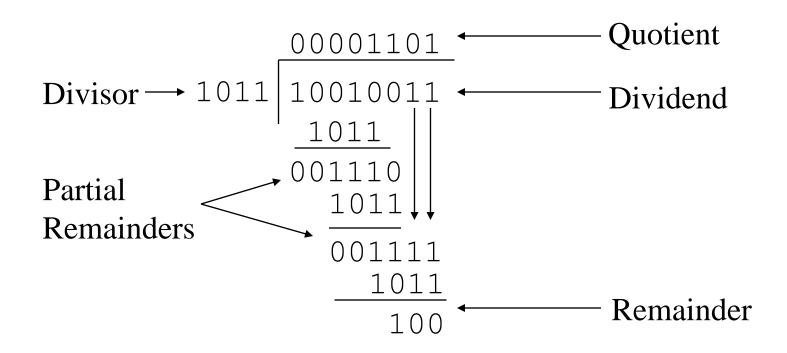
Example of Booth's Algorithm

A	Q	Q ₋₁	M	Initial Values
0000	0011	0	0111	
1001	0011	0	0111	A A - M } First Shift Cycle
1100	1001	1	0111	
1110	0100	1	0111	Shift Second Cycle
0101	0100	1	0111	A A + M Third Cycle
0010	1010	0	0111	
0001	0101	0	0111	Shift } Fourth Cycle

Division

- ****** More complex than multiplication
- ****** Negative numbers are really bad!
- **#**Based on long division

Division of Unsigned Binary Integers



Real Numbers

- **X** Numbers with fractions
- **#**Could be done in pure binary

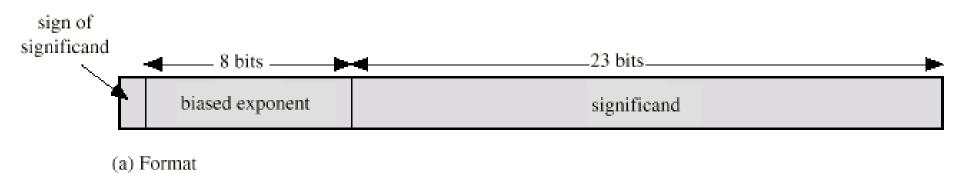
$$\triangle 1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$$

- **#**Where is the binary point?
- Fixed?
 - ✓Very limited
- **₩** Moving?
 - △How do you show where it is?

Floating Point

- \mathbb{H} +/- .significand x 2^{exponent}
- **#** Misnomer
- #Point is actually fixed between sign bit and body of mantissa
- **#** Exponent indicates place value (point position)

Floating Point Examples



(b) Examples

Signs for Floating Point

- **#** Mantissa is stored in 2s compliment
- **#** Exponent is in excess or biased notation
 - △e.g. Excess (bias) 128 means

 - Pure value range 0-255
 - Subtract 128 to get correct value
 - □Range -128 to +127

Normalization

- #FP numbers are usually normalized
- #i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- #Since it is always 1 there is no need to store it
- **%**(c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- \Re e.g. 3.123 x 10³)

FP Ranges

#For a 32 bit number

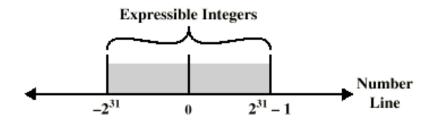
△8 bit exponent

 \triangle +/- 2²⁵⁶ \approx 1.5 x 10⁷⁷

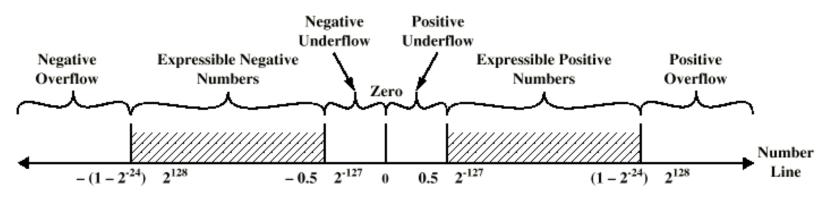
#Accuracy

- \triangle 23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
- △About 6 decimal places

Expressible Numbers



(a) Twos Complement Integers



(b) Floating-Point Numbers

IEEE 754

- **#**Standard for floating point storage
- #32 and 64 bit standards
- **#8** and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results

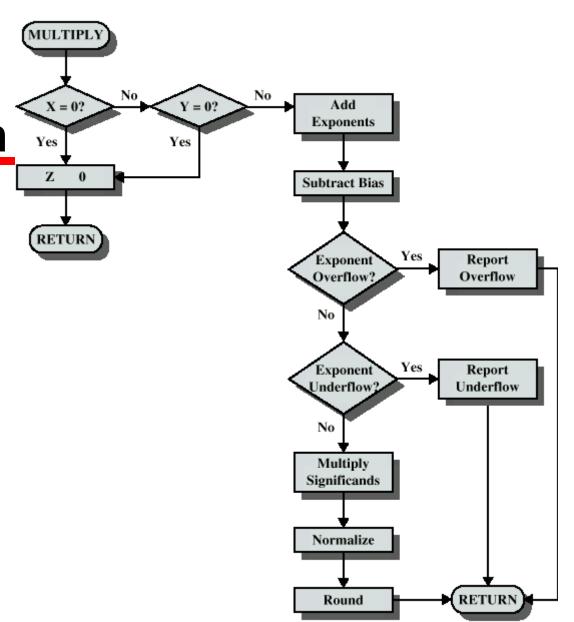
FP Arithmetic +/-

- **#**Check for zeros
- ****** Align significands (adjusting exponents)
- ******Add or subtract significands
- **X** Normalize result

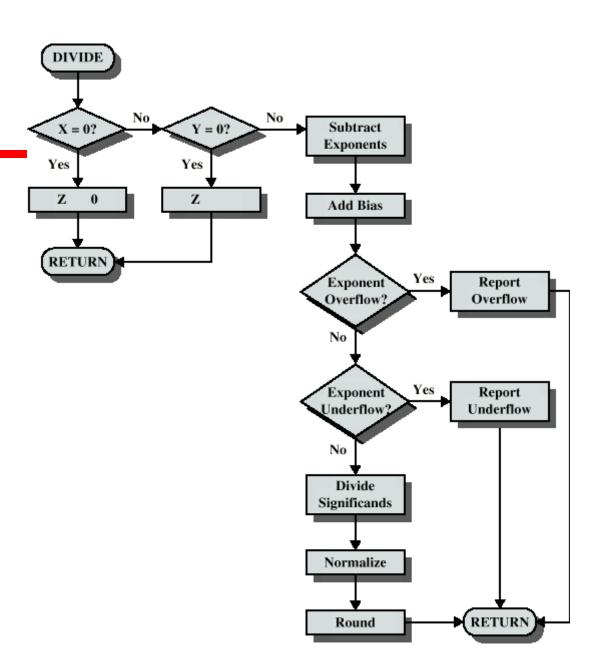
FP Arithmetic x/÷

- **#**Check for zero
- ****Add/subtract exponents**
- **#** Multiply/divide significands (watch sign)
- **X** Normalize
- **#**Round
- #All intermediate results should be in double length storage

Floating Point Multiplication



Floating Point Division



Required Reading

- **#**Stallings Chapter 8
- #IEEE 754 on IEEE Web site