William Stallings
Computer Organization and Architecture

Chapter 8
Computer Arithmetic

Arithmetic \& Logic Unit

\mathscr{H} Does the calculations
\mathscr{H} Everything else in the computer is there to service this unit
\& Handles integers
\& May handle floating point (real) numbers
\& May be separate FPU (maths co-processor)
\& May be on chip separate FPU (486DX +)

ALU Inputs and Outputs

Integer Representation

\& Only have $0 \& 1$ to represent everything \& Positive numbers stored in binary

囚e.g. 41=00101001
H No minus sign
H No period
\& Sign-Magnitude
\& Two's compliment

Sign-Magnitude

H Left most bit is sign bit
H0 means positive
\& 1 means negative
$\mathscr{H}+18=00010010$
\& $-18=10010010$
\& Problems
®Need to consider both sign and magnitude in arithmetic
囚Two representations of zero (+0 and -0)

Two's Compliment

$\mathscr{H}+3=00000011$
$\mathscr{H}+2=00000010$
$\mathscr{*}+1=00000001$
$\mathscr{H}+0=00000000$
\& $-1=11111111$
\& $-2=11111110$
\& $-3=11111101$

Benefits

\mathscr{H} One representation of zero
\mathscr{H} Arithmetic works easily (see later)
\mathscr{H} Negating is fairly easy
®3 $=00000011$
\triangle Boolean complement gives 11111100
©Add 1 to LSB 11111101

Geometric Depiction of Twos Complement Integers

Negation Special Case 1

H $0=00000000$ \& Bitwise not 11111111 HAdd 1 to LSB $+1$ \&Result
100000000
HOverflow is ignored, so:
$\mathscr{H}-0=0 \mathrm{~V}$

Negation Special Case 2

$\mathscr{H}-128=$	10000000
\&bitwise not	01111111
\&Add 1 to LSB	+1

\mathscr{L} Res
$\mathscr{H} \mathrm{So}$
$\mathscr{H}-(-128)=-128 \quad X$
H Monitor MSB (sign bit)
\&it should change during negation

Range of Numbers

\& 8 bit 2s compliment

$$
\begin{aligned}
& \boxtimes+127=01111111=2^{7}-1 \\
& \boxtimes-128=10000000=-2^{7}
\end{aligned}
$$

H 16 bit $2 s$ compliment
$\triangle+32767=01111111111111111=2^{15}-1$
囚 $-32768=10000000000000000=-2^{15}$

Conversion Between Lengths

\& Positive number pack with leading zeros
\& $+18=00010010$
$\mathscr{H}+18=0000000000010010$
H Negative numbers pack with leading ones
\& $-18=10010010$
$\mathscr{H}-18=1111111110010010$
\&i.e. pack with MSB (sign bit)

Addition and Subtraction

\& Normal binary addition
\& Monitor sign bit for overflow
\mathscr{H} Take twos compliment of substahend and add to minuend
©i.e. $a-b=a+(-b)$
\mathscr{H} So we only need addition and complement circuits

Hardware for Addition and Subtraction

$\mathrm{OF}=$ overflow bit
SW = Switch (select addition or subtraction)

Multiplication

\& Complex
\& Work out partial product for each digit \& Take care with place value (column)
\&Add partial products

Multiplication Example

\& 1011 Multiplicand (11 dec)
\& $\times 1101$ Multiplier (13 dec)
\& 1011 Partial products
\& 0000 Note: if multiplier bit is 1 copy
\& 1011 multiplicand (place value)
\& 1011 otherwise zero
\& 10001111 Product (143 dec)
\& Note: need double length result

Unsigned Binary Multiplication

Execution of Example

C	A	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add $\}$ First
0	0101	1110	1011	Shift \mathcal{S} Cycle
0	0010	1111	1011	Shift $\} \begin{aligned} & \text { Second } \\ & \text { Cycle }\end{aligned}$
0	1101	1111	1011	Add $\}$ Third
0	0110	1111	1011	Shift $\}$ Cycle
1	0001	1111	1011	Add $\}$ Fourth
0	1000	1111	1011	Shift $\}$ Cycle

Flowchart for Unsigned Binary Multiplication

Multiplying Negative Numbers

\mathscr{H} This does not work！
\＆Solution 1
囚Convert to positive if required
囚Multiply as above
囚If signs were different，negate answer
H Solution 2
囚Booth＇s algorithm

Booth's Algorithm

Example of Booth's Algorithm

A	Q	Q-1	M	
0000	0011	0	0111	Initial Values
1001	0011	0	0111	A A - M 2 First
1100	1001	1	0111	Shift ${ }^{\text {chele }}$
1110	0100	1	0111	Shift $\}$ Sycle
0101	0100	1	0111	$\mathrm{A} \quad \mathrm{A}+\mathrm{M}\}$ Third
0010	1010	0	0111	Shift $\}$ cycle
0001	0101	0	0111	$\text { Shift }\} \begin{aligned} & \text { Fourth } \\ & \text { Cycle } \end{aligned}$

Division

\mathscr{H} More complex than multiplication \mathscr{H} Negative numbers are really bad! \&Based on long division

Division of Unsigned Binary Integers

Real Numbers

\mathscr{H} Numbers with fractions
\＆Could be done in pure binary
囚1001．1010 $=2^{4}+2^{0}+2^{-1}+2^{-3}=9.625$
\＆Where is the binary point？
\＆Fixed？
囚Very limited
\＆Moving？
囚How do you show where it is？

Floating Point

\square
$\mathscr{H}+/-$.significand $\times 2^{\text {exponent }}$
\& Misnomer
HPoint is actually fixed between sign bit and body of mantissa
\mathscr{H} Exponent indicates place value (point position)

Floating Point Examples

(a) Format

$$
\begin{aligned}
0.11010001 & 2^{10100}=01001001110100010000000000000000 \\
-0.11010001 & 2^{10100}=11001001110100010000000000000000 \\
0.11010001 & 2^{-10100}=00110101110100010000000000000000 \\
-0.11010001 & 2^{-10100}=10110101110100010000000000000000
\end{aligned}
$$

(b) Examples

Signs for Floating Point

H Mantissa is stored in 2s compliment
\mathscr{H} Exponent is in excess or biased notation
囚e．g．Excess（bias） 128 means
囚8 bit exponent field
囚Pure value range 0－255
囚Subtract 128 to get correct value
囚Range－128 to＋127

Normalization

\& FP numbers are usually normalized
\&i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
H Since it is always 1 there is no need to store it
\mathscr{H} (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
He.g. 3.123×10^{3})

FP Ranges

\mathscr{H} For a 32 bit number
© 8 bit exponent
囚 $+/-2^{256} \approx 1.5 \times 10^{77}$
HAccuracy
©The effect of changing Isb of mantissa
© 23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
©About 6 decimal places

Expressible Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

IEEE 754

\mathscr{H} Standard for floating point storage
$\mathscr{H 2} 32$ and 64 bit standards
$\mathscr{H} 8$ and 11 bit exponent respectively
HExtended formats (both mantissa and exponent) for intermediate results

FP Arithmetic +/-

HCheck for zeros
\mathscr{H} Align significands (adjusting exponents)
HAdd or subtract significands
\& Normalize result

FP Arithmetic x / \div

HCheck for zero
HAdd/subtract exponents
HMultiply/divide significands (watch sign)
\&Normalize
HRound
\mathscr{H} All intermediate results should be in double length storage

Floating

Point Division

Required Reading

\& Stallings Chapter 8
HIEEE 754 on IEEE Web site

