
William Stallings William Stallings
Computer Organization

d A hit tand Architecture

Chapter 11
CPU StructureCPU Structure
and Function

CPU StructureCPU Structure

aCPU must:
`Fetch instructions
`Interpret instructions
`Fetch data
`Process data`Process data
`Write data

RegistersRegisters

aCPU must have some working space (temporary
storage)

aCalled registers
aNumber and function vary between processor

d idesigns
aOne of the major design decisions
aTop level of memory hierarchy

User Visible RegistersUser Visible Registers

aGeneral Purpose
aData
aAddress
aCondition Codes

G l P R i t (1)General Purpose Registers (1)

aMay be true general purpose
aMay be restricted
aMay be used for data or addressing
aData
`Accumulator

aAddressing
`Segment

G l P R i t (2)General Purpose Registers (2)

aMake them general purpose
`Increase flexibility and programmer options
`Increase instruction size & complexity

aMake them specialized
`S ll (f t) i t ti`Smaller (faster) instructions
`Less flexibility

How Many GP Registers?How Many GP Registers?

aBetween 8 - 32
aFewer = more memory references
aMore does not reduce memory references and

takes up processor real estate
aSee also RISC

How big?How big?

aLarge enough to hold full address
aLarge enough to hold full word
aOften possible to combine two data registers
`C programming
`double int a;
`long int a;

Condition Code RegistersCondition Code Registers

aSets of individual bits
`e.g. result of last operation was zero

aCan be read (implicitly) by programs
`e.g. Jump if zero

(ll) b baCan not (usually) be set by programs

Control & Status RegistersControl & Status Registers

aProgram Counter
aInstruction Decoding Register
aMemory Address Register
aMemory Buffer Register

aRevision: what do these all do?

Program Status WordProgram Status Word
aA set of bits
aIncludes Condition Codes
aSign of last resultaSign of last result
aZero
aCarryaCarry
aEqual
aOverflowaOverflow
aInterrupt enable/disable
aSupervisoraSupervisor

Supervisor ModeSupervisor Mode

aIntel ring zero
aKernel mode
aAllows privileged instructions to execute
aUsed by operating system
aNot available to user programs

Other RegistersOther Registers

aMay have registers pointing to:
`Process control blocks (see O/S)
`Interrupt Vectors (see O/S)

aN B CPU design and ope ating s stem designaN.B. CPU design and operating system design
are closely linked

Example Register
OrganizationsOrganizations

Foreground ReadingForeground Reading

aStallings Chapter 11
aManufacturer web sites & specs

Instruction CycleInstruction Cycle

aRevision
aStallings Chapter 3

Indirect CycleIndirect Cycle

aMay require memory access to fetch operands
aIndirect addressing requires more memory

accesses
aCan be thought of as additional instruction

b lsubcycle

Instruction Cycle with IndirectInstruction Cycle with Indirect

Instruction Cycle State
DiagramDiagram

Data Flow (Instruction Fetch)Data Flow (Instruction Fetch)

aDepends on CPU design
aIn general:

aFetch
`PC contains address of next instruction
`Address moved to MAR
`Address placed on address bus
`Control unit requests memory read
`Result placed on data bus copied to MBR then to IR`Result placed on data bus, copied to MBR, then to IR
`Meanwhile PC incremented by 1

Data Flow (Data Fetch)Data Flow (Data Fetch)

aIR is examined
aIf indirect addressing, indirect cycle is

performed
`Right most N bits of MBR transferred to MAR
`C t l it t d`Control unit requests memory read
`Result (address of operand) moved to MBR

Data Flow (Fetch Diagram)Data Flow (Fetch Diagram)

Data Flow (Indirect Diagram)Data Flow (Indirect Diagram)

Data Flow (Execute)Data Flow (Execute)

aMay take many forms
aDepends on instruction being executed
aMay include
`Memory read/write
`Input/Output
`Register transfers
`ALU ti`ALU operations

Data Flow (Interrupt)Data Flow (Interrupt)

a Simple
a Predictable
a C t PC d t ll ti ft i t ta Current PC saved to allow resumption after interrupt
a Contents of PC copied to MBR
a Special memory location (e g stack pointer) loaded toa Special memory location (e.g. stack pointer) loaded to

MAR
a MBR written to memory
a PC loaded with address of interrupt handling routine
a Next instruction (first of interrupt handler) can be

fetchedfetched

Data Flow (Interrupt Diagram)Data Flow (Interrupt Diagram)

PrefetchPrefetch

aFetch accessing main memory
aExecution usually does not access main memory
aCan fetch next instruction during execution of

current instruction
aCalled instruction prefetch

Improved PerformanceImproved Performance

aBut not doubled:
`Fetch usually shorter than execution

⌧P f t h th i t ti ?⌧Prefetch more than one instruction?

`Any jump or branch means that prefetched
instructions are not the required instructionsq

aAdd more stages to improve performance

PipeliningPipelining

aFetch instruction
aDecode instruction
aCalculate operands (i.e. EAs)
aFetch operands
aExecute instructions
aWrite result

aOverlap these operationsp p

Timing of PipelineTiming of Pipeline

Branch in a PipelineBranch in a Pipeline

Dealing with BranchesDealing with Branches

aMultiple Streams
aPrefetch Branch Target
aLoop buffer
aBranch prediction
aDelayed branching

Multiple StreamsMultiple Streams

aHave two pipelines
aPrefetch each branch into a separate pipeline
aUse appropriate pipeline

aLeads to bus & register contention
aMultiple branches lead to further pipelines being p p p g

needed

Prefetch Branch TargetPrefetch Branch Target

aTarget of branch is prefetched in addition to
instructions following branch

aKeep target until branch is executed
aUsed by IBM 360/91

Loop BufferLoop Buffer

aVery fast memory
aMaintained by fetch stage of pipeline
aCheck buffer before fetching from memory
aVery good for small loops or jumps
ac.f. cache
aUsed by CRAY-1y

Branch Prediction (1)Branch Prediction (1)

aPredict never taken
`Assume that jump will not happen
`Always fetch next instruction
`68020 & VAX 11/780
`VAX will not prefetch after branch if a page fault`VAX will not prefetch after branch if a page fault

would result (O/S v CPU design)

aPredict always takenaPredict always taken
`Assume that jump will happen
`Always fetch target instruction

Branch Prediction (2)Branch Prediction (2)

aPredict by Opcode
`Some instructions are more likely to result in a jump

than thersthan thers
`Can get up to 75% success

aTaken/Not taken switchaTaken/Not taken switch
`Based on previous history
`Good for loops`Good for loops

Branch Prediction (3)Branch Prediction (3)

aDelayed Branch
`Do not take jump until you have to
`Rearrange instructions

Branch Prediction State
DiagramDiagram

Foreground ReadingForeground Reading

aProcessor examples
aStallings Chapter 11
aWeb pages etc.

