William Stallings
Computer Organization
and Architecture

Chapter 11
CPU Structure
and Function

CPU Structure

CPU must:

[~IFetch instructions
[~lInterpret instructions
[~IFetch data
[~IProcess data
[~IWrite data

Registers

6 CPU must have some working space (temporary
storage)

> Called registers

5 Number and function vary between processor
designs

5 One of the major design decisions
> Top level of memory hierarchy

Qo Qo

Qo Qo

User Visible Registers

36 General Purpose
¢ Data

6 Address

#6 Condition Codes

General Purpose Registers (1)

>May be true general purpose
> May be restricted
>May be used for data or addressing

> Data
(~lAccumulator

#6 Addressing
[~ISegment

Qo Qo Qo Qo

General Purpose Registers (2)

6 Make them general purpose
[~lIncrease flexibility and programmer options
[~lIncrease instruction size & complexity

& Make them specialized

[~ISmaller (faster) instructions
[~]Less flexibility

How Many GP Registers?

>Between 8 - 32
5 Fewer = more memory references

> More does not reduce memory references and
takes up processor real estate

3t See also RISC

Qo Qo Qo

How big?

sLarge enough to hold full address
>Large enough to hold full word

> Often possible to combine two data registers
[~IC programming

[~ldouble int a;

[~llong Int a;

Qo Qo Qo

Condition Code Registers

3t Sets of individual bits
[~le.qg. result of last operation was zero

46 Can be read (implicitly) by programs
[~le.g. Jump If zero

36 Can not (usually) be set by programs

Control & Status Registers

6 Program Counter

#6 Instruction Decoding Register
& Memory Address Register

& Memory Buffer Register

3t Revision: what do these all do?

Program Status Word

38 A set of bits

Q

36 Includes Condition Codes
#6 Sign of last result

5 Zero

> Carry

> Equal

> Overflow

> Interrupt enable/disable

J6 Supervisor

Supervisor Mode

> Intel ring zero

> Kernel mode

5 Allows privileged instructions to execute
> Used by operating system

> Not avallable to user programs

Qo Qo Qo Qo Qo

Other Registers

6 May have registers pointing to:
[~IProcess control blocks (see O/S)
[~lInterrupt Vectors (see O/S)

& N.B. CPU design and operating system design
are closely linked

Example Register

Organizations

Al
Al
A2
A3
Ad
AS
Ab
AT
AT

Data Registers

Address Registers

Program Status

Program Counter

| Status Register

(a) MC63000

General Registers

AX
BX
CX
DX

P
Sp
BP
] |
m

Cs
DS
S8
ESs

Program Status

Accumulaior

Base

Counl

Data

nter & ITndes

Stack Pointer

Base Pointer

mouree Index

D5t Tnclex

Segment

Conle

Mata

Stack

Exira

Instr Pir

Flags

(h) 8086

EAX
EBX
ECX
EDX

ESP
EBRP
ES]
EDI

General Registers

AX

BX

CX

DX

sr

BF

Sl

]|

Program Status

FLAGS Register

Instruction Pointer

{c) 80386 - Pentium 11

Foreground Reading

¢t Stallings Chapter 11
6 Manufacturer web sites & specs

Instruction Cycle

F6 Revision
#6 Stallings Chapter 3

Indirect Cycle

> May require memory access to fetch operands

> Indirect addressing requires more memory
accesses

#6 Can be thought of as additional instruction
subcycle

Qo Qo

Instruction Cycle with Indirect

Fetch

Interrupt Indirect

Instruction Cycle State
Diagram

Indirection Indirection

)

Operand

store

Multiple Mlultiple
operands resulis

Instructio Orperand Operand
. - Iraia)
nperation address Overation address
decoding calculation pe calculatio
. o No
[nstruction complete, Feeturn Dor string

: !) inferrup
fetweth next insiruction Or vector data

Data Flow (Instruction Fetch)

> Depends on CPU design
>IN general:

Qo Qo

F6 Fetch

[~IPC contains address of next instruction

[~]Address moved to MAR

[~]Address placed on address bus

[~IControl unit requests memory read

[~IResult placed on data bus, copied to MBR, then to IR
[~IMeanwhile PC incremented by 1

Data Flow (Data Fetch)

S IR Is examined

> If Indirect addressing, indirect cycle is
performed

[~IRight most N bits of MBR transferred to MAR
[~IControl unit requests memory read

[~IResult (address of operand) moved to MBR

Qo Qo

Data Flow (Fetch Diagram)

CPU

PC “IMAR >

Memory

Control :>,
Unit

IR K——MBR K

Address Data Control

Bus Bus Bus
MER = Moemory bulfer register
MAR = Memory address register
IR = Instruction register
PC = Program counter

Data Flow (Indirect Diagram)

CPU

———"™ MAR

L

Control
Unit

K=
—>

MBR

Memory

=
=>

Address Data Control

Bus

Bus

Bus

Data Flow (Execute)

> May take many forms
> Depends on instruction being executed

> May include
[~IMemory read/write
[~ Input/Output
[~IRegister transfers
[~JALU operations

Qo Qo Qo

Data Flow (Interrupt)

& Simple

36 Predictable

#6 Current PC saved to allow resumption after interrupt
#6 Contents of PC copied to MBR

#6 Special memory location (e.g. stack pointer) loaded to
MAR

¥ MBR written to memory
36 PC loaded with address of interrupt handling routine

#8 Next instruction (first of interrupt handler) can be
fetched

Data Flow (Interrupt Diagram)

CPU

PC MAR J—>
ﬁ %Memnry

Control :'|>

Unit

> MBR | :{>‘

Address Data Control
Bus Bus Bus

Prefetch

> Fetch accessing main memory
> Execution usually does not access main memory

> Can fetch next instruction during execution of
current instruction

46 Called Instruction prefetch

Qo Qo Qo

Improved Performance

#t But not doubled:

[~IFetch usually shorter than execution
[XIPrefetch more than one instruction?

[~]Any jump or branch means that prefetched
Instructions are not the required instructions

6 Add more stages to improve performance

Pipelining

> Fetch Instruction

> Decode instruction

> Calculate operands (i.e. EAS)
> Fetch operands

> Execute instructions

> Write result

Qo Qo Qo Qo Qo Qo

#6 Overlap these operations

line

Iming of Pipe

T

Time

L)
- b
= 7]
— }.
- 75 =
TTTTTTTTTTTTTT T T TS PV T Y
b P
= -,
[-
- ' —
= < =
Tt = R T T
= =l = =
n. [= —
= 75 = =
_AT T AT T T Tt
7S] = e
Y SEEP= SE S
=) a
= S S S
] = =
= =
=
™ L | Lo’ =+ u L= - fr= =y
= =] = = = = =] = =
= = =] =] = = = =] =]
=i - = = = = = = =
¥ =] 5] ¥ 7] ¥] 5] 5]
= = = = = = = = =
= = = = = = = = =
i - A o A el - A A
w bl [2] ¥ 2] e w] 2] [2]
= = = = = = = = =
]]] |)]] |]

Branch in a Pipeline

>

Branch Penalty

+

Time

-
ui. —
.._.m.,._.. [
= e
cTTTTTTTTTTm T T mTTEIEETI I T P SR
- -
= -
e e o e e o e X--¥-
5} =)
= =
e . T
W €N
I S S S .
= = o = =
PV S S S Y
= o =) =
= SR S S
] = =
= =
=
— e o - i v ~ w; ©
= = = = = = = — —
= =] = =] = =] =] = =1
2l ol = = = ‘o ol o =
- - - [~]] - pary o
= = = = = = = o o
= = = = - = = = =
A + = = T A + = =
W W [[W W W L] -
= = = = o = = 7 7
L= (=] (=] (=] (= L= (=] = =]
]]

Dealing with Branches

& Multiple Streams

36 Prefetch Branch Target
J6 Loop buffer

#& Branch prediction

#6 Delayed branching

Multiple Streams

8 Have two pipelines
#6 Prefetch each branch into a separate pipeline
6 Use appropriate pipeline

#6 Leads to bus & register contention

#6 Multiple branches lead to further pipelines being
needed

Prefetch Branch Target

#6 Target of branch is prefetched in addition to
Instructions following branch

6 Keep target until branch is executed
& Used by IBM 360/91

Loop Buffer

£ Very fast memory

6 Maintained by fetch stage of pipeline

36 Check buffer before fetching from memory
8 Very good for small loops or jumps

F6c.f. cache

6 Used by CRAY-1

Branch Prediction (1)

#6 Predict never taken

[~]Assume that jump will not happen
[~]Always fetch next instruction
[~168020 & VAX 11/780

[~IVAX will not prefetch after branch if a page fault
would result (O/S v CPU design)

#6 Predict always taken
[~]Assume that jump will happen
[~]Always fetch target instruction

Branch Prediction (2)

#6 Predict by Opcode

[~ISome instructions are more likely to result in a jJump
than thers

[~]Can get up to 75% success
36 Taken/Not taken switch

[~IBased on previous history
[~IGood for loops

Branch Prediction (3)

36 Delayed Branch
[~IDo not take jump until you have to
[~IRearrange instructions

Branch Prediction State

Diagram

Taken

Taken

Predict

Taken

Not Taken

Predict

Taken

Predict
Not Taken

~

Taken

N

Not Taken

Not Taken

Predict Not Taken

Not Taken

Taken

Foreground Reading

6 Processor examples
#6 Stallings Chapter 11
¥ Web pages etc.

