
William Stallings William Stallings
Computer Organization

d A hit tand Architecture

Chapter 13
Instruction Level ParallelismInstruction Level Parallelism
and Superscalar Processors

What is Superscalar?What is Superscalar?

Common instructions (arithmetic, load/store,
conditional branch) can be initiated and

t d i d d tlexecuted independently
Equally applicable to RISC & CISC
I ti ll RISCIn practice usually RISC

Why Superscalar?Why Superscalar?

Most operations are on scalar quantities (see
RISC notes)
Improve these operations to get an overall
improvement

General Superscalar
OrganizationOrganization

SuperpipelinedSuperpipelined

Many pipeline stages need less than half a clock
cycle
Double internal clock speed gets two tasks per
external clock cycle
S l ll ll l f t h tSuperscalar allows parallel fetch execute

Superscalar v
SuperpipelineSuperpipeline

LimitationsLimitations
Instruction level parallelismInstruction level parallelism
Compiler based optimisation
Hardware techniquesHardware techniques
Limited by

True data dependencyTrue data dependency
Procedural dependency
Resource conflicts
Output dependency
Antidependency

True Data DependencyTrue Data Dependency

ADD r1, r2 (r1 := r1+r2;)
MOVE r3,r1 (r3 := r1;)
Can fetch and decode second instruction in
parallel with first
Can NOT execute second instruction until first is
finished

Procedural DependencyProcedural Dependency

Can not execute instructions after a branch in
parallel with instructions before a branch
Also, if instruction length is not fixed,
instructions have to be decoded to find out how
many fetches are neededmany fetches are needed
This prevents simultaneous fetches

Resource ConflictResource Conflict

Two or more instructions requiring access to the
same resource at the same time

he.g. two arithmetic instructions

Can duplicate resources
h t ith ti ite.g. have two arithmetic units

D d iDependencies

Design IssuesDesign Issues

Instruction level parallelism
Instructions in a sequence are independent
Execution can be overlapped
Governed by data and procedural dependency

Machine Pa allelismMachine Parallelism
Ability to take advantage of instruction level
parallelismparallelism
Governed by number of parallel pipelines

Instruction Issue PolicyInstruction Issue Policy

Order in which instructions are fetched
Order in which instructions are executed
Order in which instructions change registers and
memory

In-Order Issue
In Order CompletionIn-Order Completion

Issue instructions in the order they occur
Not very efficient
May fetch >1 instruction
Instructions must stall if necessary

In-Order Issue In-Order
Completion (Diagram)Completion (Diagram)

In-Order Issue
Out of Order CompletionOut-of-Order Completion

Output dependency
R3:= R3 + R5; (I1)
R4:= R3 + 1; (I2)
R3:= R5 + 1; (I3)
I2 depends on result of I1 data dependencyI2 depends on result of I1 - data dependency
If I3 completes before I1, the result from I1 will be
wrong - output (read-write) dependencyg p () p y

In-Order Issue Out-of-Order
Completion (Diagram)Completion (Diagram)

Out-of-Order Issue
Out of Order CompletionOut-of-Order Completion

Decouple decode pipeline from execution
pipeline
Can continue to fetch and decode until this
pipeline is full
Wh f ti l it b il blWhen a functional unit becomes available an
instruction can be executed
Si i t ti h b d d dSince instructions have been decoded, processor
can look ahead

Out-of-Order Issue Out-of-Order
Completion (Diagram)Completion (Diagram)

AntidependencyAntidependency

Write-write dependency
R3:=R3 + R5; (I1)
R4:=R3 + 1; (I2)
R3:=R5 + 1; (I3)
R7:=R3 + R4; (I4)R7:=R3 + R4; (I4)
I3 can not complete before I2 starts as I2 needs a
value in R3 and I3 changes R3g

Register RenamingRegister Renaming

Output and antidependencies occur because
register contents may not reflect the correct

d i f thordering from the program
May result in a pipeline stall
R i t ll t d d i llRegisters allocated dynamically

i.e. registers are not specifically named

Register Renaming exampleRegister Renaming example
R3b:=R3a + R5a (I1)R3b: R3a + R5a (I1)
R4b:=R3b + 1 (I2)
R3c:=R5a + 1 (I3)R3c:=R5a + 1 (I3)
R7b:=R3c + R4b (I4)
Without subscript refers to logical register inWithout subscript refers to logical register in
instruction
With subscript is hardware register allocatedWith subscript is hardware register allocated
Note R3a R3b R3c

Machine ParallelismMachine Parallelism

Duplication of Resources
Out of order issue
Renaming
Not worth duplication functions without register
renaming
Need instruction window large enough (more
than 8)

Branch PredictionBranch Prediction

80486 fetches both next sequential instruction
after branch and branch target instruction
Gives two cycle delay if branch taken

RISC Delayed BranchRISC - Delayed Branch

Calculate result of branch before unusable
instructions pre-fetched
Always execute single instruction immediately
following branch
K i li f ll hil f t hi i t tiKeeps pipeline full while fetching new instruction
stream
N t d f lNot as good for superscalar

Multiple instructions need to execute in delay slot
Instruction dependence problemsInstruction dependence problems

Revert to branch prediction

Superscalar ExecutionSuperscalar Execution

Superscalar ImplementationSuperscalar Implementation

Simultaneously fetch multiple instructions
Logic to determine true dependencies involving
register values
Mechanisms to communicate these values
Mechanisms to initiate multiple instructions in
parallel
Resources for parallel execution of multiple
instructions
M h i f i i iMechanisms for committing process state in
correct order

Required ReadingRequired Reading

Stallings chapter 13
Manufacturers web sites
IMPACT web site

research on predicated execution

