William Stallings
Computer Organization
and Architecture

Chapter 14
Control Unit Operation

Micro-Operations

oA computer executes a program

> Fetch/execute cycle

> Each cycle has a number of steps
[~Isee pipelining

> Called micro-operations

> Each step does very little

5 Atomic operation of CPU

Qo Qo Qo

Qo Qo Qo

Constituent Elements of

Program Execution

Program Execution

/\

Instruction Cycle Instruction Cycle

TN

Instruction Cycle

Fetch Indirect EEEL ute Interru pt

TR~

Fetch - 4 Registers

& Memory Address Register (MAR)
[~IConnected to address bus
[~ISpecifies address for read or write op

& Memory Buffer Register (MBR)
[~lConnected to data bus
[~IHolds data to write or last data read

#Program Counter (PC)
[~IHolds address of next instruction to be fetched

#6 Instruction Register (IR)
[~IHolds last instruction fetched

Fetch Sequence

6 Address of next instruction is in PC

6 Address (MAR) is placed on address bus

#& Control unit issues READ command

#8 Result (data from memory) appears on data bus
36 Data from data bus copied into MBR

& PC incremented by 1 (in parallel with data fetch from
memory)

#6 Data (instruction) moved from MBR to IR
& MBR is now free for further data fetches

Fetch Sequence (symbolic)

tl: MAR <- (PC)

3 12: MBR <- (memory)

36 PC <- (PC) +1

t3: IR <- (MBR)

#6 (tx = time unit/clock cycle)
36 or

tl: MAR <- (PC)

3 12: MBR <- (memory)

3 t3: PC <- (PC) +1

23 IR <- (MBR)

Rules for Clock Cycle Grouping

F6 Proper sequence must be followed
[~IMAR <- (PC) must precede MBR <- (memory)

38 Conflicts must be avoided

[~IMust not read & write same register at same time

[~AIMBR <- (memory) & IR <- (MBR) must not be in
same cycle

FAlso: PC <- (PC) +1 involves addition
[~lUse ALU
[~IMay need additional micro-operations

Indirect Cycle

FHMAR <- (IR 44ess) - address field of IR
F$EMBR <- (memory)

ae IRaddress <- (MBRaddress)

¢ MBR contains an address

#5 IR I1s now In same state as If direct addressing
had been used

#6 (What does this say about IR size?)

Interrupt Cycle

5t1: MBR <-(PC)
o12: MAR <- save-address

D

3 PC <- routine-address

513 memory <- (MBR)

5 This Is a minimum

[~IMay be additional micro-ops to get addresses

[~IN.B. saving context is done by interrupt handler
routine, not micro-ops

Qo Qo Qo Qo Qo

Execute Cycle (ADD)

38 Different for each instruction

Jde.g. ADD R1,X - add the contents of location X
to Register 1 , result in R1

FBtl: MAR <- (IR yyress)
F#t2: MBR <- (memory)
#t3: R1 <- R1 + (MBR)
6 Note no overlap of micro-operations

Execute Cycle (I1SZ)

F1SZ X - increment and skip if zero

[A~lt]: MAR <- (IR 44 ess)

[Alt2: MBR <- (memory)

[AIt3: MBR <- (MBR) + 1

[~lt4: memory <- (MBR)

If (MBR) == 0 then PC <- (PC) + 1
£ Notes:
[2~]if Is a single micro-operation
[~IMicro-operations done during t4

Execute Cycle (BSA)

FBSA X - Branch and save address

[~]Address of instruction following BSA Is saved in X
[~lExecution continues from X+1

(AIt1: MAR <- (IR _4gress)

MBR <- (PC)
[Alt2: PC <- (IRaddress)
memory <- (MBR)

[AIt3: PC <- (PC) +1

Functional Requirements

Define basic elements of processor
Describe micro-operations processor performs
Determine functions control unit must perform

Qo Qo Qo
(OA° (OA°/ (OA°

Basic Elements of Processor

FALU

F6 Registers

36 Internal data pahs
#6 External data paths
36 Control Unit

Types of Micro-operation

) =
S
Y =
D
) =
S

‘ransfer ©
‘ransfer o

Qo Qo Qo Qo

‘ransfer ©

ata between registers
ata from register to external
ata from external to register

> Perform arithmetic or logical ops

Functions of Control Unit

#6 Sequencing
[~ICausing the CPU to step through a series of micro-
operations

#8 Execution
[~]Causing the performance of each micro-op

#6 This Is done using Control Signals

Control Signals (1)

36 Clock
[~]One micro-instruction (or set of parallel micro-
Instructions) per clock cycle

36 Instruction register
[~]Op-code for current instruction
[~IDetermines which micro-instructions are performed

Control Signals (2)

F Flags
[~IState of CPU
[~IResults of previous operations

6 From control bus
[~lInterrupts
[~]Acknowledgements

Control Signals - output

F Within CPU
[~ICause data movement
[~]Activate specific functions
#6 Via control bus

[~ITo memory
[~ITo 1/0 modules

Example Control Signal
Sequence - Fetch

F$MAR <- (PC)
[~IControl unit activates signal to open gates between
PC and MAR

F$EMBR <- (memory)

[~]Open gates between MAR and address bus
[~IMemory read control signal

[~]Open gates between data bus and MBR

Internal Organization

> Usually a single internal bus

5 Gates control movement of data onto and off
the bus

36 Control signals control data transfer to and from
external systems bus

6 Temporary registers needed for proper
operation of ALU

Qo Qo

Hardwired Implementation (1)

5 Control unit inputs

> Flags and control bus
[~]Each bit means something

36 Instruction register

[~]Op-code causes different control signals for each
different instruction

[~]Unique logic for each op-code

[~IDecoder takes encoded input and produces single
output

[~ n binary inputs and 27 outputs

Qo Qo

Hardwired Implementation (2)

36 Clock

[~IRepetitive sequence of pulses

[~lUseful for measuring duration of micro-ops
[~IMust be long enough to allow signal propagation

[~IDifferent control signals at different times within
Instruction cycle

[~INeed a counter with different control signals for t1,
t2 etc.

Problems With Hard Wired
Designs

6 Complex sequencing & micro-operation logic
36 Difficult to design and test
3¢ Inflexible design

38 Difficult to add new Instructions

Required Reading

#6 Stallings chapter 14

