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EM Transmission Lines and Smith 
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Equivalent electrical circuits  

In this topic, we model three electrical transmission systems that can be used to 

transmit power: a coaxial cable, a strip line, and two parallel wires (twin lead). 

Each structure (including the twin lead) may have a dielectric between two 

conductors used to keep the separation between the metallic elements 

constant, so that the electrical properties would be constant. 
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Coaxial cable 
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Microstrip line 
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Twin lead 
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Equivalent electrical circuits 

Instead of examining the EM field distribution within these transmission 

lines, we will simplify our discussion by using a simple model 

consisting of distributed inductors and capacitors. This model is valid if 

any dimension of the line transverse to the direction of propagation is 

much less than the wavelength in a free space. 

The transmission lines considered here support the propagation of 

waves having both electric and magnetic field intensities transverse to 

the direction of wave propagation. This setup is sometimes called a 

transverse electromagnetic (TEM) mode of propagation. We assume 

no loss in the lines. 
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Equivalent electrical circuits 

Distributed 

transmission line 

Its equivalent 

circuit 

z is a short distance containing the distributed circuit parameter. 

    and     are distributed inductance and distributed capacitance. 

Therefore, each section has inductance        and capacitance 

ˆL̂ C
ˆˆL L z C C z     (9.7.1) 
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Equivalent electrical circuits 

(9.8.1) 

(9.8.2) 

(9.8.3) 

Note: the equations for a microstrip line are simplified and do not include 

effects of fringing. 

We can model the transmission line with an equivalent circuit consisting of an 

infinite number of distributed inductors and capacitors. 
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Equivalent electrical circuits 

The following simplifications were used: 

1) No energy loss (resistance) was incorporated; 

2) We neglected parasitic capacitances between the wires that 

constitute the distributed inductances. We will see later that these 

parasitic capacitances will lead to changes in phase velocity of the 

wave (dispersion); 

3) Parameters of the line are constant. 

We can analyze EM transmission lines either as a large number of distributed 

two-port networks or as a coupled set of first-order PDEs that are called the 

telegraphers’ equations. 
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Transmission line equations 

While analyzing the equivalent circuit of the lossless transmission line, it is 

simpler to use Kirchhoff’s laws rather than Maxwell’s equations. 

Therefore, we will 

consider the 

equivalent circuit of 

this form: 

For simplicity, we define the inductance and capacitance per unit length: 

ˆˆ ;
L C

L C
z z

   (9.10.1) 

which have units of Henries per unit length and Farads per unit length, respectively. 
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Transmission line equations 

The current entering the node at the location z is I(z). The part of this current 

will flow through the capacitor, and the rest flows into the section. Therefore:  

( , )ˆ( , ) ( , )
V z t

I z t C z I z z t
t


  



( , ) ( , ) ( , )ˆI z z t I z t V z t
C

z t

  
 



(9.11.1) 

(9.11.2) 

       , the LHS of (9.11.2) is a spatial derivative. Therefore: 0If z 

( , ) ( , )ˆI z t V z t
C

z t

 
 

 
(9.11.3) 
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Transmission line equations 

Similarly, the sum of the voltage drops in this section can be calculated via the 

Kirchhoff’s law also: 

( , )ˆ( , ) ( , )
I z t

V z z t L z V z t
t


  



( , ) ( , ) ( , )ˆV z t V z z t I z t
L

z t

  
 



(9.12.1) 

(9.12.2) 

       , the LHS of (9.12.2) is a spatial derivative. Therefore: 0If z 

( , ) ( , )ˆV z t I z t
L

z t

 
 

 
(9.12.3) 
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Transmission line equations 

The equations (9.11.3) and (9.12.3) are two linear coupled first-order PDEs 

called the telegrapher’s (Heaviside) equations. They can be composed in a 

second-order PDE: 

2 2

2 2

( , ) ( , )ˆˆ 0
I z t I z t

LC
z t

 
 

 

2 2

2 2

( , ) ( , )ˆˆ 0
V z t V z t

LC
z t

 
 

 

(9.13.1) 

(9.13.2) 

We may recognize that both (9.13.1) and (9.13.2) are wave equations with 

the velocity of propagation: 

1

ˆˆ
v

LC
 (9.13.3) 
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Transmission line equations 

Example 9.1: Show that a transmission line consisting of distributed linear 

resistors and capacitors in the given configuration can be used to model diffusion. 

We assume that the 

resistance and the 

capacitance per unit length 

are defined as 

ˆˆ ;
R C

R C
z z

   (9.14.1) 

Potential drop over the resistor R and the current through the capacitor C are: 

ˆ( , ) ( , )

( , )ˆ( , )

V z t I z t R z

V z t
I z t C z

t

  


  



(9.14.2) 

(9.14.3) 
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Transmission line equations 

( , ) ˆ0 ( , )

( , ) ( , )ˆ

V z t
If z I z t R

z

I z t V z t
C

z t


   



 
 

 

The corresponding second-order PDE for the potential is: 

2

2

( , )( , ) ( , )ˆ( ,ˆ ˆ)ˆˆI z t V z t
R R

V z t V z t
RC

z
C

z t t

  
  

 

 

 


 

(9.15.2) 

(9.15.1) 

(9.15.3) 

Which is a form of a diffusion equation with a diffusion coefficient: 

1

ˆˆ
D

RC
 (9.15.4) 
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Transmission line equations 

Example 9.2: Show that a particular solution for the diffusion equation is given by 
2

4
1

( , )
2

z

DtV z t e
D t





Differentiating the solution with respect to z: 
2

4
3 2

( , ) 1

22

z

Dt
V z t z

e
z DtD

  
  

  
2

2 2

4
2 3 2 2 5 2

( , ) 1

2 42

z

Dt
V z t z z

e
z Dt D tD

 
   

  

Differentiating the solution with respect to t: 

2
2

4
3 2 5 2

1 ( , ) 1 1

2 42

z

Dt
V z t t z

e
D t D t DtD

 
   

  

(9.16.1) 

(9.16.2) 

(9.16.3) 

(9.16.4) 
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Transmission line equations 

Since the RHSs of (9.16.3) and (9.16.4) are equal, the diffusion equation is 

satisfied. 

The voltages at different times 

are shown. The total area under 

each curve equals 1. 

This solution would be valid if a 

certain amount of charge is 

placed at z = 0 at some moment 

in the past. 

Note: the diffusion is significantly 

different from the wave 

propagation. 
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Sinusoidal waves 

We are looking for the solutions of wave equations (9.13.1) and 

(9.13.2) for the time-harmonic (AC) case. We must emphasize that – 

unlike the solution for a static DC case or quasi-static low-frequency 

case (ones considered in the circuit theory) – these solutions will be in 

form of traveling waves of voltage and current, propagating in either 

direction on the transmission line with the velocity specified by (9.13.3). 

We assume here that the transmission line is connected to a distant generator 

that produces a sinusoidal signal at fixed frequency  = 2f. Moreover, the 

generator has been turned on some time ago to ensure that transient response 

decayed to zero; therefore, the line is in a steady-state mode. 

The most important (and traditional) simplification for the time-harmonic case 

is the use of phasors. We emphasize that  while in the AC circuits analysis 

phasors are just complex numbers, for the transmission lines, phasors are 

complex functions of the position z on the line. 
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Sinusoidal waves 

   ( , ) Re ( ) ; ( , ) Re ( )j t j tV z t V z e I z t I z e   

2
2

2

2
2

2

( )
( ) 0

( )
( ) 0

d V z
k V z

dz

d I z
k I z

dz

 

 

Therefore, the wave equations will become: 

Here, as previously, k is the wave number: 

2
k

v

 


 

Velocity of propagation 

Wavelength of the voltage or current wave 

(9.19.1) 

(9.19.2) 

(9.19.3) 

(9.19.4) 
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Sinusoidal waves 

A solution for the wave equation (9.13.3) can be found, for instance, in one of 

these forms: 

1 1

2 2

( ) cos sin

( ) jkz jkz

V z A kz B kz

V z A e B e 

 

 

(9.20.1) 

(9.20.2) 

We select the exponential form (9.20.2) since it is easier to interpret in terms of 

propagating waves of voltage on the transmission line. 

Example 9.3: The voltage of a wave propagating through a transmission line was 

continuously measured by a set of detectors placed at different locations along 

the transmission line. The measured values are plotted. Write an expression for 

the wave for the given data. 
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Sinusoidal waves 
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Sinusoidal waves 

We assume that the peak-to peak amplitude of the wave is 2V0. We also 

conclude that the wave propagates in the +z direction. 

The period of the wave is 2s, therefore, the frequency of oscillations is ½ Hz. 

The velocity of propagation can be found from the slope as: 

5 1
4

1 0
v m s


  



The wave number is: 
12 0.5

4 4
k m

v

   
   

The wavelength is: 
2 4 2

8 m
k

 





   

Therefore, the wave is: 
4

0( , )

z
j t

V z t V e



 

 
 

(9.22.2) 

(9.22.3) 

(9.22.4) 

(9.22.5) 

Not in vacuum! 

2 f    (9.22.1) 
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Sinusoidal waves 

Assuming next that the source is located far from the observation point (say, at z 

= -) and that the transmission line is infinitely long, there would be only a 

forward traveling wave of voltage on the transmission line. In this case, the 

voltage on the transmission line is: 

0( ) jkzV z V e

The phasor form of (9.12.3) in this case is 

ˆ(
(

)
)

) (jkV z j LI z
dV z

dz
  

0( ) ( )
ˆ ˆ

jkzk k
I z V z V e

L L 

 

Which may be rearranged as: 

(9.23.1) 

(9.23.2) 

(9.23.3) 
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Sinusoidal waves 

The ratio of the voltage to the current is a very important transmission line 

parameter called the characteristic impedance: 

ˆ( )

( )
c

V z L
Z

I z k


 

1

ˆˆ
k and v

v LC


   Since  

Then:  
ˆ

ˆc

L
Z

C
 

(9.24.1) 

(9.24.2) 

(9.24.3) 

We emphasize that (9.24.3) is valid for the case when only one wave (traveling 

either forwards or backwards) exists. In a general case, more complicated 

expression must be used. If the transmission line was lossy, the characteristic 

impedance would be complex. 
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Sinusoidal waves 

If we know  the characteristics of the transmission lane and the forward voltage 

wave, we may find the forward current wave by dividing voltage by the 

characteristic impedance. 

Another important parameter of a transmission line is its length L, which is often 

normalized by the wavelength of the propagation wave. 

Assuming that the dielectric between conductors has  and  
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Sinusoidal waves 

The velocity of propagation does not depend on the dimensions of 

the transmission line and is only a function of the parameters of the 

material that separates two conductors. However, the characteristic 

impedance DOES depend upon the geometry and physical 

dimensions of the transmission line. 
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Sinusoidal waves 

Example 9.4: Evaluate the velocity of propagation and the characteristic impedance 

of an air-filled coaxial cable with radii of the conductors of 3 mm and 6 mm. 

The inductance and capacitance per unit length are: 

The velocity of propagation is: 

The characteristic impedance of the cable is: 

Both the v and the Zc may be decreased by insertion of a dielectric between leads. 

7

0 4 10 6ˆ ln ln 0.14
2 2 3

H m
b

L
a


 

 

   
      

   

   

12

02 2 8.854 10ˆ 80
ln ln 6 3

pF mC
b a

   
   

8

6 12

1 1
3 10

ˆˆ 0.14 10 80 10
m sv

LC
 

    
  

6 12ˆˆ 0.14 10 80 10 42cZ L C  
     

(9.27.1) 

(9.27.2) 

(9.27.3) 

(9.27.4) 
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Terminators 

So far, we assumed that the 

transmission line was infinite. In 

the reality, however, 

transmission lines have both the 

beginning and the end. 

The line has a real characteristic 

impedance Zc. We assume that the 

source of the wave is at z = - and 

the termination (the end of the line) 

is at z = 0. The termination may be 

either an impedance or another 

transmission line with different 

parameters. We also assume no 

transients. 
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Terminators 

The phasor voltage at any point on the line is: 

2 2( ) jkz jkzV z A e B e  

The phasor current is: 

2 2( )
jkz jkz

c

A e B e
I z

Z

 


At the load location (z = 0), the ratio of voltage to current must be equal ZL: 

2 2

2 2

( 0)

( 0)
L c

A BV z
Z Z

I z A B


 

 

Note: the ratio B2 to A2 represents the magnitude of the wave incident on the 

load ZL. 

(9.29.1) 

(9.29.2) 

(9.29.3) 
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Terminators 

(9.30.1) 

We introduce the reflection coefficient for the transmission line with a load as: 

2

2

L c

L c

Z ZB

A Z Z


  



Often, the normalized impedance is used: 

L
L

c

Z
z

Z


The reflection coefficient then becomes: 

2

2

1

1

L

L

B z

A z


  



(9.30.2) 

(9.30.3) 
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Terminators 

Therefore, the phasor representations for the voltage and the current are: 

0

0

( )

( )

jkz jkz

jkz jkz

c

V z V e e

V
I z e e

Z

 

 

   

   

(9.31.1) 

(9.31.2) 

The total impedance is: 
( )

( )
( )

V z
Z z

I z


generally a complicated function of the position and NOT equal to Zc. However, 

a special case of matched load exists when: 

L cZ Z

In this situation: ( ) cZ z Z

(9.31.3) 

(9.31.4) 

(9.31.5) 
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Terminators 

Example 9.5: Evaluate the reflection coefficient for a wave that is incident from 

z = - in an infinitely long coaxial cable that has r = 2 for z < 0 and r = 3 for z > 0. 

The characteristic impedance is: 

 ˆ ln

ˆ 2
c

b aL
Z

C



 
 

The load impedance of a line is the characteristic impedance of the line for z > 0.  
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Terminators 

The reflection coefficient can be expressed as:  

   

   

0 0

2 0 1 02 1

2 1 0 0

2 0 1 0

2 1

2 1

ln ln

2 2

ln ln

2 2

1 1 1 1

3 2
0.1

1 1 1 1

3 2

r r

r r

r r

r r

b a b a

Z Z

Z Z b a b a

 

     

 

     

 

 

   
   

      
    

   
   

 

   

 
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Terminators 

The reflection coefficient  is completely determined by the value of the 

impedance of the load and the characteristic impedance of the transmission 

line. The reflection coefficient for a lossless transmission line can have any 

complex value with magnitude less or equal to one. 

If the load is a short circuit (ZL = 0), the reflection coefficient  = -1. The voltage 

at the load is a sum of voltages of the incident and the reflected components 

and must be equal to zero since the voltage across the short circuit is zero.  

If the load is an open circuit (ZL = ), the reflection coefficient  = +1. The 

voltage at the load can be arbitrary but the total current must be zero.  

If the load impedance is equal to the characteristic impedance (ZL = Zc), the 

reflection coefficient  = 0 – line is matched. In this case, all energy of 

generator will be absorbed by the load. 
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Terminators 

For the shorten transmission line: 

 0

0

1

( , ) Re

2 sin cos
2

jkz jkz j tV z t V e e e

V kz t






 

  

   

 
   

 

(9.35.1) 

(9.35.2) 

For the open transmission line: 

 
 

0

0

1

( , ) Re

2 cos cos

jkz jkz j tV z t V e e e

V kz t





 

  

   

 

(9.35.3) 

(9.35.4) 

In both cases, a standing wave is created. 

The signal does not appear to propagate. 
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Terminators 

Since the current can be found as 0 0 cI V Z

ZL =  

ZL = 0 

Note that the current wave differs from the voltage wave by 900 
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Terminators 

Another important quantity is the ratio of the maximum voltage to the minimum 

voltage called the voltage standing wave ratio: 

max

min

1

1

V
VSWR

V

 
 

 

Which leads to  
1

1

VSWR

VSWR


 



VSWR, the reflection coefficient, the load impedance, and the characteristic 

impedance are related. 

Even when the amplitude of the incident wave V0 does not exceed the maximally 

allowed value for the transmission line, reflection may lead to the voltage V0(1+||) 

exceeding the maximally allowed. 

Therefore, the load and the line must be matched. 

(9.37.1) 

(9.37.2) 
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Terminators 

Example 9.6: Evaluate the VSWR for the coaxial cable described in the Example 

9.5. The reflection coefficient was evaluated as  = -0.1. 

1 1 0.1
1.2

1 1 0.1
VSWR

   
  

   

Note: if two cables were matched, the VSWR would be 1. 



ELEN 3371 Electromagnetics Fall 2008 

39 

Terminators 
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Lossy transmission lines 

Up to this point, our discussion was limited to lossless transmission lines 

consisting of equivalent inductors and capacitors only. As a result, the 

characteristic impedance for such lines is real. Let us incorporate ohmic 

losses within the conductors and leakage currents between conductors. 

In this case, the characteristic impedance becomes complex and the new 

model will be: 
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Lossy transmission lines 

The new first-order PDEs (telegrapher’s equations) are 

( , ) ( , )ˆ ˆ ( , )

( , ) ( , )ˆ ˆ ( , )

I z t V z t
C GV z t

z t

V z t I z t
L RI z t

z t

 
  

 

 
  

 

(9.83.1) 

(9.83.2) 

Where the circuit elements are defines as 

ˆ ˆˆ ˆ; ; ;
L C R G

L C R G
z z z z

      

A time-harmonic excitation of the transmission line leads to a phasor notation: 

( ) ˆ ˆ ( )

( ) ˆ ˆ ( )

I z
G j C V z

z

V z
R j L I z

z






   
 


   
 

(9.83.3) 

(9.83.4) 

(9.83.5) 
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Lossy transmission lines 

The quantities in square brackets are denoted by distributed admittance     and 

distributed impedance     leading to 
Ŷ

Ẑ

( ) ˆ ( )

( ) ˆ ( )

dI z
YV z

dz

dV z
ZI z

dz

 

 

(9.84.1) 

(9.84.2) 

Second-order ODEs can be derived for current and voltage: 

2

2

2

2

( ) ˆ ˆ ( )

( ) ˆ ˆ ( )

d I z
ZYI z

dz

d V z
ZYV z

dz





(9.84.3) 

(9.84.4) 

The phasor form solutions: 

1 2

1 2

( )

( )

z z

z z

V z V e V e

I z I e I e

 

 

 

 

 

 

(9.84.5) 

(9.84.6) 
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Lossy transmission lines 

Here,  is the complex propagation constant: 

  ˆ ˆˆ ˆ ˆ ˆj ZY R j L G j C          (9.85.1) 

As previously, we denote by V1 and I1 the amplitudes of the forward (in the +z 

direction) propagating voltage and current waves; and V2 and I2 are the amplitudes 

of the backward (in the -z direction) propagating voltage and current waves. 

Therefore, the time varying waves will be in the form: 

   

   

1 2

1 2

( , ) cos cos

( , ) cos cos

z z

z z

V z t V e t z V e t z

I z t I e t z I e t z

 

 

   

   

 

 

   

   

(9.85.2) 

(9.85.3) 

We recognize that (9.85.2) and (9.85.3) are exponentially decaying propagating 

waves: the forward wave (V1, I1) propagates and decays in the +z direction, while 

the backward wave (V2, I2) propagates and decays in the –z direction. 
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Lossy transmission lines 

An example of a forward 

propagating wave: it is 

possible to determine the 

values of  and  from the 

graph as shown. 
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Lossy transmission lines 

For small losses, employing a binomial approximation (1 – x)n  1 – nx for x << 1, 

the complex propagating constant is approximately 

ˆ ˆˆ ˆ
ˆ ˆˆ ˆ1 1 1

ˆ ˆ ˆ ˆ2 2

R G R G
j j L j C j LC j

j L Lj C C
     

  

     
                

       

The attenuation constant can be approximated as 

ˆ ˆˆ ˆ1ˆ ˆˆ ˆ
ˆ ˆ ˆ ˆ22 2

R G R G
LC LC

L LC C
 

 

   
         

   

The attenuation constant does not depend on frequency. 

(9.87.1) 

(9.87.2) 
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Lossy transmission lines (Ex) 

Example 9.17: Find the complex propagation constant if the circuit elements satisfy 

the ratio                    . Interpret this situation. ˆ ˆˆ ˆR L G C

The complex propagation constant is: 

      
ˆ ˆˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ

RC C
j R j L G j C R j L j C R j L

L L
       

 
           

 

The attenuation constant is independent on frequency, which implies no distortion 

of a signal as it propagates on this transmission line and a constant attenuation. 

The characteristic impedance of this transmission line 

 
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆˆ ˆc

Z R j L R j L L
Z

Y G j C CRC L j C

 

 

 
   

 

does not depend on frequency. Therefore, this transmission line is distortionless. 
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Lossy transmission lines 

Example 9.18: The attenuation on a 50  distortionless transmission line is 0.01 

dB/m. The line has a capacitance of 0.110-9 F/m. Find: 

a) Transmission line parameters: distributed inductance, resistance, conductance; 

b) The velocity of wave propagation. 

Since the line is distortionless, the characteristic impedance is 

2 2 9 7
ˆ

ˆˆ50 50 0.1 10 2.5 10
ˆc c

L
Z L Z C H m

C

          

The attenuation constant is: 

 
ˆ 0.01ˆ 0.01 1 20lg( ) 8.686 0.0012
ˆ 8.686

C
R dB m Np m e dB m Np m

L
          

Therefore: 
ˆ

ˆ 0.0012 50 0.0575
ˆ c

L
R Z m

C
      
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Lossy transmission lines (Ex) 

The distortionless line criterium is: 

5

2 2

ˆ ˆˆ ˆ ˆ 0.0575ˆ 2.3 10
ˆ ˆ ˆ 50c

R G RC R
G S m

ZL LC

       

The phase velocity is: 

8

7 9

1 1
2 10

ˆˆ 2.5 10 0.1 10
v m s

LC
 

    
  
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Dispersion and group velocity 

The losses of types considered previously (finite conductivity of conductors and 

nonzero conductivity of real dielectrics) lead to attenuation of wave amplitude as 

it propagates through the line. 

 

When the wavelength is comparable with the physical dimensions of the line or 

when the permittivity of the dielectric depends on the frequency, another 

phenomenon called dispersion occurs. 

We will model dispersion by the 

insertion of a distributed parasitic 

capacitance in parallel to the distributed 

inductance. 

While developing the telegrapher’s 

equation for this case, we note that the 

current entering the node will split into 

two portions: 

( , ) ( , ) ( , )L cI z t I z t I z t  (9.91.1) 
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Dispersion and group velocity 

The voltage drop across the capacitor is: 

( , )( , ) ˆ LI z tV z t
L

z t


 

 

The voltage drop across the parasitic (shunt) capacitor is: 

( , ) 1

ˆ c

s

V z t
I dt

z C


 

 

Note: the units of this additional shunt capacitance are Fm rather than F/m. 

The current passing through the shunt capacitor: 

( , ) ( , )ˆI z t V z t
C

z t

 
 

 

The wave equation will be: 

2 2 4

2 2 2 2

( , ) ( , ) ( , )ˆ ˆˆ ˆ 0s

V z t V z t V z t
LC LC

z t z t

  
  

   

(9.92.1) 

(9.92.2) 

(9.92.3) 

(9.92.4) 
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Dispersion and group velocity 

Assume that there is a time-harmonic signal generator connected to the 

infinitely long transmission line. The complex time-varying wave propagating 

through the line will be 

( )

0( , ) j t zV z t V e   

Combining (9.92.4) and (9.93.1) leads to the dispersion relation (the terms in the 

square brackets) relating the propagation constant  to the frequency of the wave: 

       
2 2 2 2( )

0
ˆ ˆˆ ˆ 0j t z

sV e j LC j LC j j           
 

Therefore, the propagation constant is a nonlinear function of frequency: 

2

ˆˆ

ˆˆ1 s

LC

LC





 



(9.93.1) 

(9.93.2) 

(9.93.3) 
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Dispersion and group velocity 

dispersion 

no dispersion 

The propagation constant 

depends on frequency – this 

phenomenon is called 

dispersion. 

The phase velocity is a function 

of frequency also. 
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Dispersion and group velocity 

We can consider dispersion as a low pass filter acting on a signal. The 

propagation constant will be a real number for frequencies less than the particular 

cutoff frequency 0. 

0

1

ˆˆ
sLC

 

This cutoff frequency is equal to the resonant frequency of the “tank” circuit. Above 

this frequency, the propagation constant will be imaginary, and the wave will not 

propagate. 

In the non-dispersive frequency range (below the cutoff frequency), the velocity of 

propagation is 

0

1

ˆˆ
V

LC


The wave number below the cutoff frequency is: 

0
0

0v


 

(9.95.1) 

(9.95.2) 

(9.95.3) 
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Dispersion and group velocity 

Dispersion implies that 

the propagation 

constant depends on 

the frequency. 

There are positive and 

negative dispersions. 

Note that in the case of 

negative dispersion, 

waves of frequencies 

less than a certain cutoff 

frequency will propagate. 

While for the positive dispersion, only the waves whose frequency exceeds the 

cutoff frequency will propagate. 
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Dispersion and group velocity 

If two signals of different frequencies propagate through the same linear 

dispersive medium, we must employ the concept of group velocity… 

if a narrow pulse propagates in a dispersive region, according to Fourier 

analysis, such a pulse consists of a number of high frequency components. 

Each of them will propagate with different phase velocity. 

Let us assume that two waves of the same amplitude but slightly different 

frequencies propagate through the same dispersive medium. The frequencies are: 

1 0 2 0;         

The corresponding propagation constants are: 

1 0 2 0;         

The total signal will be a sum of two waves: 

   

   

0 1 1 2 2

0 0 0

( , ) cos cos

2 cos cos

V z t V t z t z

V t z t z

   

   

     

   

(9.97.1) 

(9.97.2) 

(9.97.3) 
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Dispersion and group velocity 

Summation of two time-harmonic 

waves of slightly different 

frequencies leads to constructive 

and destructive interference. 

v
o
lt
a
g
e
 

By detecting signals at two locations, we 

can track a point of constant phase 

propagating with the phase velocity: 

0 0pv  

and the peak of the envelope propagating with the group velocity: gv    

(9.98.1) 

(9.98.2) 

In dispersive media, phase and group velocities can be considerably different! 
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Dispersion and group velocity (Ex) 

Example 9.19: Find the phase and group velocities for: 

a) Normal transmission line; 

b) A line in which the elements are interchanged. 

a) The propagation 

constant  computed 

according to (9.87.1) 

will be: 

  ˆ ˆˆ ˆ ˆ ˆj YZ j L j C j LC         

The phase velocity is 1

ˆˆ
pv

LC




 

The group velocity is 1
1

ˆˆ
gv

LC

 



 
  


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Dispersion and group velocity (Ex) 

The two velocities are equal in this case and both are independent on frequency. 

b) The propagation constant  computed according to (9.87.1) will be: 

1 1 1ˆ ˆ
ˆ ˆ ˆˆ

j YZ
j Lj C j LC

  
 

     

The phase velocity is 
2 ˆˆ

pv LC





  

The group velocity is 
2 ˆˆ1gv LC

 




 
  



The phase and group velocities both depend on frequency and are in the 

opposite directions. 

?? QUESTIONS ?? 


