

VECTOR CALCULUS

13.2

Line Integrals

In this section, we will learn about:
Various aspects of line integrals
in planes, space, and vector fields.

LINE INTEGRALS

In this section, we define an integral that is similar to a single integral except that, instead of integrating over an interval $[a, b]$, we integrate over a curve C.

- Such integrals are called line integrals.
- However, "curve integrals" would be better terminology.

LINE INTEGRALS

They were invented in the early 19th century to solve problems involving:

- Fluid flow
- Forces
- Electricity
- Magnetism

LINE INTEGRALS
 Equations 1

We start with a plane curve C given by the parametric equations

$$
x=x(t) \quad y=y(t) \quad a \leq t \leq b
$$

LINE INTEGRALS

Equivalently, C can be given by the vector equation $r(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$.

We assume that C is a smooth curve.

- This means that \mathbf{r}^{\prime} is continuous and $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$.

LINE INTEGRALS

Let's divide the parameter interval $[a, b]$ into n subintervals $\left[t_{i-1}, t_{i}\right]$ of equal width.

We let $x_{i}=x\left(t_{i}\right)$ and $y_{i}=y\left(t_{i}\right)$.

LINE INTEGRALS

Then, the corresponding points $P_{i}\left(x_{i}, y_{i}\right)$ divide C into n subarcs with lengths
$\Delta s_{1}, \Delta s_{2}, \ldots, \Delta s_{n}$.

LINE INTEGRALS

We choose any point $P_{i}^{*}\left(x_{i}^{*}, y_{i}^{*}\right)$ in the i th subarc.

- This corresponds to a point t_{i}^{*} in $\left[t_{i-1}, t_{j}\right]$.

LINE INTEGRALS

Now, if f is any function of two variables whose domain includes the curve C, we:

1. Evaluate f at the point $\left(x_{i}^{*}, y_{i}^{*}\right)$.
2. Multiply by the length Δs_{i} of the subarc.
3. Form the sum $\sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}$
which is similar to a Riemann sum.

LINE INTEGRALS

Then, we take the limit of these sums and make the following definition by analogy with a single integral.

LINE INTEGRAL

Definition 2

If f is defined on a smooth curve C given by Equations 1, the line integral of f along C is:

$$
\int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

if this limit exists.

LINE INTEGRALS

We found that the length

 of C is:$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

- A similar type of argument can be used to show that, if f is a continuous function, then the limit in Definition 2 always exists.

LINE INTEGRALS

Formula 3
Then, this formula can be used to evaluate the line integral.

$$
\begin{aligned}
& \int_{C} f(x, y) d s \\
& =\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\end{aligned}
$$

LINE INTEGRALS

The value of the line integral does not depend on the parametrization of the curve-provided the curve is traversed exactly once as t increases from a to b.

LINE INTEGRALS

If $s(t)$ is the length of C between $\mathbf{r}(a)$ and $\mathbf{r}(t)$, then

$$
\frac{d s}{d t}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

LINE INTEGRALS

So, the way to remember Formula 3 is to express everything in terms of the parameter t :

- Use the parametric equations to express x and y in terms of t and write ds as:

$$
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

LINE INTEGRALS

In the special case where C is the line segment that joins $(a, 0)$ to $(b, 0)$, using x as the parameter, we can write the parametric equations of C as:

$$
\begin{gathered}
x=x \\
y=0 \\
a \leq x \leq b
\end{gathered}
$$

LINE INTEGRALS

Formula 3 then becomes

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x, 0) d x
$$

- So, the line integral reduces to an ordinary single integral in this case.

LINE INTEGRALS

Just as for an ordinary single integral, we can interpret the line integral of a positive function as an area.

LINE INTEGRALS

In fact, if $f(x, y) \geq 0, \int_{C} f(x, y) d s$ represents the area of one side of the "fence" or "curtain" shown here, whose:

- Base is C.
- Height above the point (x, y) is $f(x, y)$.

LINE INTEGRALS

Example 1

Evaluate

$$
\int_{C}\left(2+x^{2} y\right) d s
$$

where C is the upper half of the unit circle $x^{2}+y^{2}=1$

- To use Formula 3, we first need parametric equations to represent C.

LINE INTEGRALS
 Example 1

Recall that the unit circle can be parametrized by means of the equations

$$
x=\cos t \quad y=\sin t
$$

LINE INTEGRALS
 Example 1

Also, the upper half of the circle is described by the parameter interval

$$
0 \leq t \leq \pi
$$

LINE INTEGRALS

Example 1

So, Formula 3 gives:

$$
\begin{aligned}
\int_{C}\left(2+x^{2} y\right) d s & =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) \sqrt{\sin ^{2} t+\cos ^{2} t} d t \\
& =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) d t \\
& =\left[2 t-\frac{\cos ^{3} t}{3}\right]_{0}^{\pi}=2 \pi+\frac{2}{3}
\end{aligned}
$$

PIECEWISE-SMOOTH CURVE

Now, let C be a piecewise-smooth curve.

- That is, C is a union of a finite number of smooth curves $C_{1}, C_{2}, \ldots, C_{n}$, where the initial point of C_{i+1} is the terminal point of C_{i}.

LINE INTEGRALS

Then, we define the integral of f along C as the sum of the integrals of f along each of the smooth pieces of C :

$$
\begin{aligned}
& \int_{C} f(x, y) d s \\
& \begin{aligned}
&=\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s \\
&+\ldots+\int_{C_{n}} f(x, y) d s
\end{aligned}
\end{aligned}
$$

LINE INTEGRALS

Example 2

Evaluate

$$
\int_{C} 2 x d s
$$

where C consists of the arc C_{1} of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ followed by the vertical line segment C_{2} from $(1,1)$ to $(1,2)$.

LINE INTEGRALS

Example 2

The curve is shown here.

C_{1} is the graph of
a function of x.

- So, we can choose x as the parameter.
- Then, the equations for C_{1}
 become:

$$
x=x \quad y=x^{2} \quad 0 \leq x \leq 1
$$

LINE INTEGRALS

Example 2
Therefore,

$$
\begin{aligned}
\int_{C_{1}} 2 x d s & =\int_{0}^{1} 2 x \sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{0}^{1} 2 x \sqrt{1+4 x^{2}} d x \\
& \left.=\frac{1}{4} \cdot \frac{2}{3}\left(1+4 x^{2}\right)^{3 / 2}\right]_{0}^{1} \\
& =\frac{5 \sqrt{5}-1}{6}
\end{aligned}
$$

LINE INTEGRALS

Example 2

On C_{2}, we choose y
as the parameter.

- So, the equations of C_{2} are:

$$
\begin{aligned}
& x=1 \quad y=1 \quad 1 \leq y \leq 2 \\
& \text { and } \\
& \int_{C_{2}} 2 x d s
\end{aligned}
$$

$$
=\int_{1}^{2} 2(1) \sqrt{\left(\frac{d x}{d y}\right)^{2}+\left(\frac{d y}{d y}\right)^{2}} d y=\int_{1}^{2} 2 d y=2
$$

LINE INTEGRALS

Example 2

Thus,

$$
\begin{aligned}
\int_{C} 2 x d s & =\int_{C_{1}} 2 x d s+\int_{C_{2}} 2 x d s \\
& =\frac{5 \sqrt{5}-1}{6}+2
\end{aligned}
$$

LINE INTEGRALS

Any physical interpretation of a line integral

$$
\int_{C} f(x, y) d s
$$

depends on the physical interpretation of the function f.

- Suppose that $\rho(x, y)$ represents the linear density at a point (x, y) of a thin wire shaped like a curve C.

LINE INTEGRALS

Then, the mass of the part of the wire from P_{i-1} to P_{i} in this figure is approximately $\rho\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}$.

- So, the total mass of the wire is approximately $\sum \rho\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}$

MASS

By taking more and more points on the curve, we obtain the mass m of the wire as the limiting value of these approximations:

$$
\begin{aligned}
m & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \rho\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i} \\
& =\int_{C} \rho(x, y) d s
\end{aligned}
$$

MASS

For example, if $f(x, y)=2+x^{2} y$ represents the density of a semicircular wire, then the integral in Example 1 would represent the mass of the wire.

CENTER OF MASS

Equations 4

The center of mass of the wire with
density function ρ is located at the point (\bar{x}, \bar{y}), where:

$$
\begin{aligned}
& \bar{x}=\frac{1}{m} \int_{C} x \rho(x, y) d s \\
& \bar{y}=\frac{1}{m} \int_{C} y \rho(x, y) d s
\end{aligned}
$$

LINE INTEGRALS

Example 2

A wire takes the shape of the semicircle
$x^{2}+y^{2}=1, y \geq 0$, and is thicker near its
base than near the top.

- Find the center of mass of the wire if the linear density at any point is proportional to its distance from the line $y=1$.

LINE INTEGRALS

Example 2

As in Example 1, we use the parametrization

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq \pi
$$

and find that $d s=d t$.

LINE INTEGRALS

Example 2

The linear density is $\rho(x, y)=k(1-y)$
where k is a constant.

So, the mass of the wire is:

$$
\begin{aligned}
m=\int_{C} k(1-y) d s & =\int_{0}^{\pi} k(1-\sin t) d t \\
& =k[t+\cos t]_{0}^{\pi} \\
& =k(\pi-2)
\end{aligned}
$$

LINE INTEGRALS

Example 2

From Equations 4, we have:

$$
\begin{aligned}
\bar{y}=\frac{1}{m} \int_{C} y \rho(x, y) d s & =\frac{1}{k(\pi-2)} \int_{C} y k(1-y) d s \\
& =\frac{1}{\pi-2} \int_{0}^{\pi}\left(\sin t-\sin ^{2} t\right) d t \\
& =\frac{1}{\pi-2}\left[-\cos t-\frac{1}{2} t+\frac{1}{4} \sin 2 t\right]_{0}^{\pi} \\
& =\frac{4-\pi}{2(\pi-2)}
\end{aligned}
$$

LINE INTEGRALS

Example 2

By symmetry, we see that $\bar{x}=0$.

So, the center of mass
is:

$$
\begin{aligned}
& \left(0, \frac{4-\pi}{2(\pi-2)}\right) \\
& \approx(0,0.38)
\end{aligned}
$$

LINE INTEGRALS

Two other line integrals are obtained by replacing Δs_{j}, in Definition 2, by either:

$$
\text { - } \Delta x_{i}=x_{i}-x_{i-1}
$$

$$
\text { - } \Delta y_{i}=y_{i}-y_{i-1}
$$

LINE INTEGRALS

Equations 5 \& 6
They are called the line integrals of f along C with respect to x and y :

$$
\begin{aligned}
& \int_{C} f(x, y) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta x_{i} \\
& \int_{C} f(x, y) d y=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta y_{i}
\end{aligned}
$$

ARC LENGTH

When we want to distinguish the original line integral $\int_{C} f(x, y) d s$ from those in Equations 5 and 6, we call it the line integral with respect to arc length.

TERMS OF t

The following formulas say that line integrals with respect to x and y can also be evaluated by expressing everything in terms of t :

$$
\begin{aligned}
x & =x(t) \\
y & =y(t) \\
d x & =x^{\prime}(t) d t \\
d y & =y^{\prime}(t) d t
\end{aligned}
$$

TERMS OF t

Formulas 7

$$
\int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t
$$

$$
\int_{C} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t
$$

ABBREVIATING

It frequently happens that line integrals

 with respect to x and y occur together.- When this happens, it's customary to abbreviate by writing

$$
\begin{aligned}
& \int_{C} P(x, y) d x+\int_{C} Q(x, y) d y \\
& =\int_{C} P(x, y) d x+Q(x, y) d y
\end{aligned}
$$

LINE INTEGRALS

When we are setting up a line integral, sometimes, the most difficult thing is to think of a parametric representation for a curve whose geometric description is given.

- In particular, we often need to parametrize a line segment.

VECTOR REPRESENTATION

Equation 8
So, it's useful to remember that a vector representation of the line segment that starts at \mathbf{r}_{0} and ends at \mathbf{r}_{1} is given by:

$$
\mathbf{r}(t)=(1-t) \mathbf{r}_{0}+t \mathbf{r}_{1} \quad 0 \leq t \leq 1
$$

ARC LENGTH

Example 4

Evaluate
 $$
\int_{C} y^{2} d x+x d y
$$

where

a. $\quad C=C_{1}$ is the line segment from $(-5,-3)$ to $(0,2)$
b. $\quad C=C_{2}$ is the arc of the parabola $x=4-y^{2}$ from $(-5,-3)$ to $(0,2)$.

ARC LENGTH
 Example 4 a

A parametric representation for the line segment is:

$$
x=5 t-5 \quad y=5 t-3 \quad 0 \leq t \leq 1
$$

- Use Equation 8 with $\mathbf{r}_{0}=\langle-5,3\rangle$ and $\mathbf{r}_{1}=\langle 0,2\rangle$.

ARC LENGTH

Example 4 a

Then, $d x=5 d t, d y=5 d t$, and Formulas 7 give:

$$
\begin{aligned}
\int_{C_{1}} y^{2} d x+x d y & =\int_{0}^{1}(5 t-3)^{2}(5 d t)+(5 t-5)(5 d t) \\
& =5 \int_{0}^{1}\left(25 t^{2}-25 t+4\right) d t \\
& =5\left[\frac{25 t^{3}}{3}-\frac{25 t^{2}}{2}+4 t\right]_{0}^{1}=-\frac{5}{6}
\end{aligned}
$$

ARC LENGTH
 Example 4 b

The parabola is given as a function of y.

So, let's take y as the parameter and write C_{2} as:

$$
x=4-y^{2} \quad y=y \quad-3 \leq y \leq 2
$$

ARC LENGTH

Example 4 b

Then, $d x=-2 y d y$
and, by Formulas 7, we have:

$$
\begin{aligned}
\int_{C_{2}} y^{2} d x+x d y & =\int_{-3}^{2} y^{2}(-2 y) d y+\left(4-y^{2}\right) d y \\
& =\int_{-3}^{2}\left(-2 y^{3}-y^{2}+4\right) d y \\
& =\left[-\frac{y^{4}}{2}-\frac{y^{3}}{3}+4 y\right]_{-3}^{2}=40 \frac{5}{6}
\end{aligned}
$$

ARC LENGTH

Notice that we got different answers in parts
a and b of Example 4 although the two curves
had the same endpoints.

- Thus, in general, the value of a line integral depends not just on the endpoints of the curve but also on the path.
- However, see Section 13.3 for conditions under which it is independent of the path.

ARC LENGTH

Notice also that the answers in Example 4 depend on the direction, or orientation, of the curve.

- If $-C_{1}$ denotes the line segment from $(0,2)$ to $(-5,-3)$, you can verify, using the parametrization

$$
x=-5 t \quad y=2-5 t \quad 0 \leq t \leq 1
$$

that

$$
\int_{-C_{1}} y^{2} d x+x d y=\frac{5}{6}
$$

CURVE ORIENTATION

In general, a given parametrization

$$
x=x(t), y=y(t), a \leq t \leq b
$$

determines an orientation of a curve C, with the positive direction corresponding to increasing values of the parameter t.

CURVE ORIENTATION

For instance, here

- The initial point A corresponds to the parameter value.
- The terminal point B corresponds to $t=b$.

CURVE ORIENTATION

If $-C$ denotes the curve consisting of the same points as C but with the opposite orientation (from initial point B to terminal point A in the previous figure), we have:

$$
\int_{-C} f(x, y) d x=-\int_{C} f(x, y) d x
$$

$$
\int_{-C} f(x, y) d y=-\int_{C} f(x, y) d y
$$

CURVE ORIENTATION

However, if we integrate with respect to
arc length, the value of the line integral does not change when we reverse the orientation of the curve:

$$
\int_{-C} f(x, y) d s=\int_{C} f(x, y) d s
$$

- This is because Δs_{i} is always positive, whereas Δx_{i} and Δy_{i} change sign when we reverse the orientation of C.

LINE INTEGRALS IN SPACE

We now suppose that C is a smooth space curve given by the parametric equations

$$
x=x(t) \quad y=y(t) \quad a \leq t \leq b
$$

or by a vector equation

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

LINE INTEGRALS IN SPACE

Suppose f is a function of three variables that is continuous on some region containing C.

- Then, we define the line integral of f along C (with respect to arc length) in a manner similar to that for plane curves:

$$
\int_{C} f(x, y, z) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \Delta s_{i}
$$

LINE INTEGRALS IN SPACE

Formula/Equation 9
We evaluate it using a formula similar to Formula 3:

$$
\begin{aligned}
& \int_{C} f(x, y, z) d s \\
& =\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}
\end{aligned}
$$

LINE INTEGRALS IN SPACE

Observe that the integrals in both Formulas 3 and 9 can be written in the more compact vector notation

$$
\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

LINE INTEGRALS IN SPACE

For the special case $f(x, y, z)=1$, we get:

$$
\int_{C} d s=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t=L
$$

where L is the length of the curve C.

LINE INTEGRALS IN SPACE

Line integrals along C with respect to x, y, and z can also be defined.

- For example,

$$
\begin{aligned}
\int_{C} f(x, y, z) d z & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \Delta z_{i} \\
& =\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t
\end{aligned}
$$

LINE INTEGRALS IN SPACE
 Formula 10

Thus, as with line integrals in the plane, we evaluate integrals of the form

$$
\int_{C} P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z
$$

by expressing everything $(x, y, z, d x, d y, d z)$ in terms of the parameter t.

LINE INTEGRALS IN SPACE

Example 5

Evaluate

$$
\int_{C} y \sin z d s
$$

where C is the circular helix given by the equations

$$
\begin{aligned}
& x=\cos t \\
& y=\sin t \\
& z=t
\end{aligned}
$$

$0 \leq t \leq 2 \pi$

LINE INTEGRALS IN SPACE

Example 5

Formula 9 gives:

$\int_{C} y \sin z d s$
$=\int_{0}^{2 \pi}(\sin t) \sin t \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t$
$=\int_{0}^{2 \pi} \sin ^{2} t \sqrt{\sin ^{2} t+\cos ^{2} t+1} d t$
$=\sqrt{2} \int_{0}^{2 \pi} \frac{1}{2}(1-\cos 2 t) d t$
$=\frac{\sqrt{2}}{2}\left[t-\frac{1}{2} \sin 2 t\right]_{0}^{2 \pi}=\sqrt{2} \pi$

LINE INTEGRALS IN SPACE

Example 6

Evaluate

$$
\int_{C} y d x+z d y+x d z
$$

where C consists of the line segment C_{1} from $(2,0,0)$ to $(3,4,5)$, followed by the vertical line segment C_{2} from $(3,4,5)$ to $(3,4,0)$.

LINE INTEGRALS IN SPACE

The curve C is shown.

- Using Equation 8, we write C_{1} as:

$$
\begin{aligned}
r(t)= & (1-t)\langle 2,0,0\rangle \\
& +t\langle 3,4,5\rangle \\
= & \langle 2+t, 4 t, 5 t\rangle
\end{aligned}
$$

LINE INTEGRALS IN SPACE

- Alternatively, in parametric form, we write C_{1} as:

$$
\begin{aligned}
x & =2+t \\
y & =4 t \\
z & =5 t
\end{aligned},
$$

LINE INTEGRALS IN SPACE

- Thus,

$$
\begin{aligned}
& \int_{C_{1}} y d x+z d y+x d z \\
& =\int_{0}^{1}(4 t) d t+(5 t) 4 d t+(2+t) 5 d t \\
& =\int_{0}^{1}(10+29 t) d t \\
& \left.=10 t+29 \frac{t^{2}}{2}\right]_{0}^{1}=24.5
\end{aligned}
$$

LINE INTEGRALS IN SPACE

Likewise, C_{2} can be written in the form

$$
\begin{aligned}
r(t) & =(1-t)\langle 3,4,5\rangle+t\langle 3,4,0\rangle \\
& =\langle 3,4,5-5 t\rangle
\end{aligned}
$$

or

$$
x=3 \quad y=4 \quad z=5-5 t \quad 0 \leq t \leq 1
$$

LINE INTEGRALS IN SPACE

Then, $d x=0=d y$.

$$
\text { So, } \begin{aligned}
\int_{C_{1}} y d x+z d y+x d z & =\int_{3}^{1} 3(-5) d t \\
& =-15
\end{aligned}
$$

- Adding the values of these integrals, we obtain:

$$
\int_{C_{1}} y d x+z d y+x d z=24.5-15
$$

$$
=9.5
$$

LINE INTEGRALS OF VECTOR FIELDS

Recall that the work done by a variable force $f(x)$ in moving a particle from a to b along the x-axis is:

$$
W=\int_{a}^{b} f(x) d x
$$

LINE INTEGRALS OF VECTOR FIELDS

We found that the work done by a constant force \mathbf{F} in moving an object from a point P to another point in space is:

$$
W=\mathbf{F} \cdot \mathbf{D}
$$

where $\mathbf{D}=\overrightarrow{P Q}$ is the displacement vector.

LINE INTEGRALS OF VECTOR FIELDS

Now, suppose that

$$
\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}
$$

is a continuous force field on ${ }^{\circ}$, such as:

- The gravitational field
- The electric force field

LINE INTEGRALS OF VECTOR FIELDS

A force field on ${ }^{\circ}{ }^{3}$ could be regarded as
a special case where $R=0$ and P and Q depend only on x and y.

- We wish to compute the work done by this force in moving a particle along a smooth curve C.

LINE INTEGRALS OF VECTOR FIELDS

We divide C into subarcs $P_{i-1} P_{i}$ with
lengths Δs_{i} by dividing the parameter interval $[a, b]$ into subintervals of equal width.

LINE INTEGRALS OF VECTOR FIELDS

The first figure shows the two-dimensional case.

The second shows the three-dimensional one.

LINE INTEGRALS OF VECTOR FIELDS

Choose a point $P_{i}^{*}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right)$ on
the i th subarc corresponding to the parameter value t_{i}^{*}.

LINE INTEGRALS OF VECTOR FIELDS

If Δs_{i} is small, then as the particle moves from P_{i-1} to P_{i} along the curve, it proceeds approximately in the direction of $\mathbf{T}\left(t_{i}^{*}\right)$, the unit tangent vector at P_{i}^{*}.

LINE INTEGRALS OF VECTOR FIELDS

Thus, the work done by the force \mathbf{F} in moving the particle P_{i-1} from to P_{i} is approximately

$$
\begin{aligned}
& \mathbf{F}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \cdot\left[\Delta s_{i} \mathbf{T}\left(t_{i}^{*}\right)\right] \\
& =\left[\mathbf{F}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \cdot \mathbf{T}\left(t_{i}^{*}\right)\right] \Delta s_{i}
\end{aligned}
$$

VECTOR FIELDS

Formula 11
The total work done in moving the particle along C is approximately

$$
\sum_{i=1}^{n}\left[\mathbf{F}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \cdot \mathbf{T}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right)\right] \Delta s_{i}
$$

where $\mathbf{T}(x, y, z)$ is the unit tangent vector at the point (x, y, z) on C.

VECTOR FIELDS

Intuitively, we see that these

 approximations ought to become better as n becomes larger.
VECTOR FIELDS

Equation 12

Thus, we define the work W done by
the force field \mathbf{F} as the limit of the Riemann sums in Formula 11, namely,

$$
W=\int_{C} \mathbf{F}(x, y, z) \cdot \mathbf{T}(x, y, z) d s=\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

- This says that work is the line integral with respect to arc length of the tangential component of the force.

VECTOR FIELDS

If the curve C is given by the vector equation

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

then

$$
\mathbf{T}(t)=\mathbf{r}^{\prime}(t) /\left|\mathbf{r}^{\prime}(t)\right|
$$

VECTOR FIELDS

So, using Equation 9, we can rewrite

 Equation 12 in the form$$
\begin{aligned}
W & =\int_{a}^{b}\left[\mathbf{F}(\mathbf{r}(t)) \cdot \frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}\right]\left|\mathbf{r}^{\prime}(t)\right| d t \\
& =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
\end{aligned}
$$

VECTOR FIELDS

This integral is often abbreviated as $\int_{C} \mathbf{F} \cdot d r$ and occurs in other areas of physics as well.

- Thus, we make the following definition for the line integral of any continuous vector field.

VECTOR FIELDS

Definition 13

Let \mathbf{F} be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t), a \leq t \leq b$.

Then, the line integral of F along C is:

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

VECTOR FIELDS

When using Definition 13, remember $\mathbf{F}(\mathbf{r}(t))$

 is just an abbreviation for$$
\mathbf{F}(x(t), y(t), z(t))
$$

- So, we evaluate $\mathbf{F}(\mathbf{r}(t))$ simply by putting

$$
x=x(t), y=y(t), \text { and } z=z(t)
$$

in the expression for $\mathbf{F}(x, y, z)$.

- Notice also that we can formally write $d \mathbf{r}=\mathbf{r}^{\prime}(t) d t$.

VECTOR FIELDS

Example 7

Find the work done by the force field

$$
\mathbf{F}(x, y)=x^{2} \mathbf{i}-x y \mathbf{j}
$$

in moving a particle along
the quarter-circle

$$
\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}, \quad 0 \leq t \leq \pi / 2
$$

VECTOR FIELDS

Example 7

Since $x=\cos t$ and $y=\sin t$, we have:

$$
\mathbf{F}(\mathbf{r}(t))=\cos ^{2} t \mathbf{i}-\cos t \sin t \mathbf{j}
$$

and

$$
\mathbf{r}^{\prime}(t)=-\sin t \mathbf{i}+\cos t \mathbf{j}
$$

VECTOR FIELDS

Example 7

Therefore, the work done is:

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{\pi / 2} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{\pi / 2}\left(-2 \cos ^{2} t \sin t\right) d t \\
& \left.=2 \frac{\cos ^{3} t}{3}\right]_{0}^{\pi / 2}=-\frac{2}{3}
\end{aligned}
$$

VECTOR FIELDS

The figure shows the force field and

 the curve in Example 7.- The work done is negative because the field impedes movement along the curve.

VECTOR FIELDS

Note

Although $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{F} \cdot \mathbf{T} d s$ and integrals with respect to arc length are unchanged when orientation is reversed, it is still true that:

$$
\int_{-C} \mathbf{F} \cdot d \mathbf{r}=-\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

- This is because the unit tangent vector \mathbf{T} is replaced by its negative when C is replaced by $-C$.

VECTOR FIELDS

Example 8

Evaluate

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where:

- $\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}$
- C is the twisted cubic given by

$$
x=t \quad y=t^{2} \quad z=t^{3} \quad 0 \leq t \leq 1
$$

VECTOR FIELDS

Example 8
We have:

$$
\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}
$$

$$
\mathbf{r}^{\prime}(t)=\mathbf{i}+2 t \mathbf{j}+3 t^{2} \mathbf{k}
$$

$$
\mathbf{F}(\mathbf{r}(t))=f^{3} \mathbf{i}+t^{5} \mathbf{j}+t^{4} \mathbf{k}
$$

VECTOR FIELDS

Example 8
Thus,

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{1} \mathbf{F}\left(\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)\right) d t \\
& =\int_{0}^{1}\left(t^{3}+5 t^{6}\right) d t \\
& \left.=\frac{t^{4}}{4}+\frac{5 t^{7}}{7}\right]_{0}^{1}=\frac{27}{28}
\end{aligned}
$$

VECTOR FIELDS

The figure shows the twisted cubic in Example 8 and some typical vectors acting at three points on C.

VECTOR \& SCALAR FIELDS

Finally, we note the connection

 between line integrals of vector fields and line integrals of scalar fields.
VECTOR \& SCALAR FIELDS

Suppose the vector field F on ${ }^{\circ}$ is given in component form by:

$$
\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}
$$

- We use Definition 13 to compute its line integral along C, as follows.

VECTOR \& SCALAR FIELDS

$$
\begin{aligned}
& \int_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{a}^{b}(P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}) \cdot\left(x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k}\right) d t \\
& =\int_{a}^{b}\left[\begin{array}{l}
P(x(t), y(t), z(t)) x^{\prime}(t) \\
+Q(x(t), y(t), z(t)) y^{\prime}(t) \\
+R(x(t), y(t), z(t)) z^{\prime}(t)
\end{array}\right] d t
\end{aligned}
$$

VECTOR \& SCALAR FIELDS

However, that last integral is precisely the line integral in Formula 10.

Hence, we have:

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y+R d z
$$

where $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$

VECTOR \& SCALAR FIELDS

For example, the integral

$$
\int_{C} y d x+z d y+x d z
$$

in Example 6 could be expressed as

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where

$$
\mathbf{F}(x, y, z)=y \mathbf{i}+z \mathbf{j}+x \mathbf{k}
$$

