
VECTOR CALCULUS 

13 



13.2 

Line Integrals 

VECTOR CALCULUS 

In this section, we will learn about: 

Various aspects of line integrals  

in planes, space, and vector fields. 



LINE INTEGRALS 

In this section, we define an integral that  

is similar to a single integral except that, 

instead of integrating over an interval [a, b], 

we integrate over a curve C.  

 

 Such integrals are called line integrals. 

 

 However, “curve integrals” would be better 

terminology.  



LINE INTEGRALS 

They were invented in the early 19th century 

to solve problems involving:  

 

 Fluid flow  

 

 Forces  

 

 Electricity  

 

 Magnetism 



LINE INTEGRALS 

We start with a plane curve C given by  

the parametric equations 

 

x = x(t)     y = y(t)     a ≤ t ≤ b 

Equations 1 



LINE INTEGRALS 

Equivalently, C can be given by the vector 

equation r(t) = x(t) i + y(t) j. 

We assume that C is a smooth curve. 

 

 This means that r’ is continuous and r’(t) ≠ 0. 

 

 



LINE INTEGRALS 

Let’s divide the parameter interval [a, b]  

into n subintervals [ti-1, ti] of equal width. 

 

We let xi = x(ti) and yi = y(ti). 



LINE INTEGRALS 

Then, the corresponding points Pi(xi, yi)  

divide C into n subarcs with lengths  

∆s1, ∆s2, …, ∆sn. 



LINE INTEGRALS 

We choose any point Pi
*(xi

*, yi
*) in  

the i th subarc. 

 

 This corresponds to  

a point ti
* in [ti-1, ti]. 



LINE INTEGRALS 

Now, if f is any function of two variables 

whose domain includes the curve C, we: 

 

1. Evaluate f at the point (xi
*, yi

*). 

 

2. Multiply by the length ∆si of the subarc. 

 

3. Form the sum  

 

which is similar to a Riemann sum.  

 * *

1

,
n

i i i

i

f x y s






LINE INTEGRALS 

Then, we take the limit of these sums  

and make the following definition by 

analogy with a single integral.   



LINE INTEGRAL 

If f is defined on a smooth curve C given by 

Equations 1, the line integral of f along C  

is: 

 

 

if this limit exists. 

Definition 2 

   * *

1

, lim ,
n

i i i
C n

i

f x y ds f x y s




 



LINE INTEGRALS 

We found that the length  

of C is: 

 

 

 

 A similar type of argument can be used  

to show that, if f is a continuous function,  

then the limit in Definition 2 always exists. 

2 2
b

a

dx dy
L dt

dt dt

   
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   




LINE INTEGRALS 

Then, this formula can be used to evaluate  

the line integral. 

 

    
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,
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b

a

f x y ds
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f x t y t dt

dt dt

   
    
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



Formula 3 



LINE INTEGRALS 

The value of the line integral does not depend 

on the parametrization of the curve—provided 

the curve is traversed exactly once as t 

increases from a to b.    



LINE INTEGRALS 

If s(t) is the length of C between r(a)  

and r(t), then 

2 2
ds dx dy

dt dt dt

   
    

   



LINE INTEGRALS 

So, the way to remember Formula 3  

is to express everything in terms of  

the parameter t : 

 

 Use the parametric equations to express x and y  

in terms of t and write ds as:  

2 2
dx dy

ds dt
dt dt

   
    

   



LINE INTEGRALS 

In the special case where C is the line 

segment that joins (a, 0) to (b, 0), using x as 

the parameter, we can write the parametric 

equations of C as:  

x = x 

y = 0 

a ≤ x ≤ b   



LINE INTEGRALS 

Formula 3 then becomes 

 

 

 

 

 So, the line integral reduces to an ordinary  

single integral in this case. 

   , ,0
b

C a
f x y ds f x dx 



LINE INTEGRALS 

Just as for an ordinary single integral, we 

can interpret the line integral of a positive 

function as an area. 



LINE INTEGRALS 

In fact, if f(x, y) ≥ 0,      represents  

the area of one side of the “fence” or “curtain” 

shown here,  

whose:  

 

 Base is C. 

 

 Height above the point  

(x, y) is f(x, y). 

 ,
C

f x y ds



LINE INTEGRALS 

Evaluate  

 

where C is the upper half of the unit circle  

x2 + y2 = 1 

 

 To use Formula 3, we first need  

parametric equations to represent C. 

Example 1 

 22
C

x y ds



LINE INTEGRALS 

Recall that the unit circle can be 

parametrized by means of the equations  

 

x = cos t      y = sin t 

Example 1 



LINE INTEGRALS 

Also, the upper half of the circle is 

described by the parameter interval  

      0 ≤ t ≤ π 

Example 1 



LINE INTEGRALS 

So, Formula 3 gives: 
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Example 1 



PIECEWISE-SMOOTH CURVE 

Now, let C be a piecewise-smooth curve. 

 

 That is, C is a union of a finite number of smooth 

curves C1, C2, …, Cn, where the initial point of Ci+1  

is the terminal point of Ci.   



LINE INTEGRALS 

Then, we define the integral of f along C  

as the sum of the integrals of f along each  

of the smooth pieces of C:  

 

   

 
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C
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C
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f x y ds f x y ds

f x y ds

 
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

 





LINE INTEGRALS 

Evaluate   

 

where C consists of the arc C1 of the parabola 

y = x2 from (0, 0) to (1, 1) followed by the 

vertical line segment C2 from (1, 1) to (1, 2).   

Example 2 

2
C

x ds



LINE INTEGRALS 

The curve is shown here. 

 

C1 is the graph of  

a function of x. 

 So, we can choose x  

as the parameter. 

 Then, the equations for C1  

become:  

  x = x     y = x2    0 ≤ x ≤ 1 

Example 2 



LINE INTEGRALS 

Therefore, 

 
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LINE INTEGRALS 

On C2, we choose y  

as the parameter. 

 So, the equations of C2  

are:  

x = 1     y = 1     1 ≤ y ≤ 2  

and  

 
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LINE INTEGRALS 

Thus, 

1 2

2 2 2
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LINE INTEGRALS 

Any physical interpretation of a line integral  

 

depends on the physical interpretation of  

the function f. 

 

 Suppose that ρ(x, y) represents  

the linear density at a point (x, y)  

of a thin wire shaped like a curve C. 

 ,
C

f x y ds



LINE INTEGRALS 

Then, the mass of the part of the wire  

from Pi-1 to Pi in this figure is approximately  

ρ(xi
*, yi

*) ∆si. 

 

 So, the total mass  

of the wire is  

approximately  

Σ ρ(xi
*, yi

*) ∆si.  



MASS 

By taking more and more points on the curve, 

we obtain the mass m of the wire as  

the limiting value of these approximations: 

 

 

 

 

 

* *

1

lim ,

,

n

i i i
n

i

C

m x y s

x y ds








 









MASS 

For example, if f(x, y) = 2 + x2y represents  

the density of a semicircular wire, then  

the integral in Example 1 would represent  

the mass of the wire. 



CENTER OF MASS 

The center of mass of the wire with  

density function ρ is located at the point          , 

where: 

 ,x y

 

 

1
,

1
,

C

C

x x x y ds
m

y y x y ds
m













Equations 4 



LINE INTEGRALS 

A wire takes the shape of the semicircle  

x2 + y2 = 1, y ≥ 0, and is thicker near its  

base than near the top. 

 

 Find the center of mass of the wire if  

the linear density at any point is proportional  

to its distance from the line y = 1.   

Example 2 



LINE INTEGRALS 

As in Example 1, we use the parametrization  

 

x = cos t        y = sin t       0 ≤ t ≤ π 

 

and find that ds = dt.  

Example 2 



LINE INTEGRALS 

The linear density is ρ(x, y) = k(1 – y)  

where k is a constant. 

 

So, the mass of the wire is: 

 
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LINE INTEGRALS 

From Equations 4, we have: 

 
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LINE INTEGRALS 

By symmetry, we see that          . 

 

So, the center of mass  

is:   

0x 

 

 

4
0,

2 2

0,0.38





 
 
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

Example 2 



LINE INTEGRALS 

Two other line integrals are obtained  

by replacing ∆si, in Definition 2, by  

either: 

 

 ∆xi = xi – xi-1 

 

 ∆yi = yi – yi-1  



LINE INTEGRALS 

They are called the line integrals of f along C 

with respect to x and y: 

Equations 5 & 6 

   

   
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1
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, lim ,
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i

n
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i

f x y dx f x y x

f x y dy f x y y



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
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ARC LENGTH 

When we want to distinguish the original  

line integral                      from those in 

Equations 5 and 6, we call it the line integral 

with respect to arc length.  

 ,
C

f x y ds



TERMS OF t 

The following formulas say that line integrals 

with respect to x and y can also be evaluated 

by expressing everything in terms of t: 

x = x(t) 

y = y(t) 

   dx = x’(t) dt 

   dy = y’(t) dt 



TERMS OF t Formulas 7 

        

        
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b

C a

b

C a

f x y dx f x t y t x t dt

f x y dy f x t y t y t dt





 

 



ABBREVIATING 

It frequently happens that line integrals  

with respect to x and y occur together. 

 

 

 When this happens, it’s customary to  

abbreviate by writing 

   

   

, ,

, ,

C C

C

P x y dx Q x y dy

P x y dx Q x y dy



 

 





LINE INTEGRALS 

When we are setting up a line integral, 

sometimes, the most difficult thing is to think 

of a parametric representation for a curve 

whose geometric description is given. 

 

 In particular, we often need to parametrize  

a line segment. 



VECTOR REPRESENTATION 

So, it’s useful to remember that a vector 

representation of the line segment that  

starts at r0 and ends at r1 is given by: 

 

r(t) = (1 – t)r0 + t r1    0 ≤ t ≤ 1 

 

 

Equation 8 



ARC LENGTH 

Evaluate  

where  

a.  C = C1 is the line segment from (–5, –3) to (0, 2)  

b.  C = C2 is the arc  

of the parabola  

x = 4 – y2 from  

(–5, –3) to (0, 2).  

2

C
y dx xdy

Example 4 



ARC LENGTH 

A parametric representation for the line 

segment is: 

 

x = 5t – 5   y = 5t – 3   0 ≤ t ≤ 1 

 

 

 Use Equation 8 with r0 = <–5, 3> and r1 = <0, 2>. 

Example 4 a 



ARC LENGTH 

Then, dx = 5 dt, dy = 5 dt,  

and Formulas 7 give: 

      
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Example 4 a 



ARC LENGTH 

The parabola is given as a function of y. 

 

So, let’s take y as the parameter and  

write C2 as: 

 

x = 4 – y2  y = y  –3 ≤ y ≤ 2 

Example 4 b 



ARC LENGTH 

Then, dx = –2y dy  

and, by Formulas 7, we have: 

Example 4 b 
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ARC LENGTH 

Notice that we got different answers in parts  

a and b of Example 4 although the two curves 

had the same endpoints.  

 

 Thus, in general, the value of a line integral 

depends not just on the endpoints of the curve  

but also on the path.  

 

 However, see Section 13.3 for conditions  

under which it is independent of the path. 



ARC LENGTH 

Notice also that the answers in Example 4 

depend on the direction, or orientation, of  

the curve.  

 

 If –C1 denotes the line segment from (0, 2) to  

(–5, –3), you can verify, using the parametrization  

 

 x = –5t y = 2 – 5t  0 ≤ t ≤ 1  

 

that 
1

2 5
6C

y dx xdy


 



CURVE ORIENTATION 

In general, a given parametrization  

   

  x = x(t), y = y(t), a ≤ t ≤ b  

 

determines an orientation of a curve C,  

with the positive direction corresponding to 

increasing values of the parameter t. 



CURVE ORIENTATION 

For instance, here 

 

 The initial point A  

corresponds to  

the parameter value. 

 

 The terminal point B  

corresponds to t = b.  



CURVE ORIENTATION 

If –C denotes the curve consisting of  

the same points as C but with the opposite 

orientation (from initial point B to terminal  

point A in the previous figure), we have: 

   

   

, ,

, ,

C C

C C

f x y dx f x y dx

f x y dy f x y dy
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CURVE ORIENTATION 

However, if we integrate with respect to  

arc length, the value of the line integral does 

not change when we reverse the orientation  

of the curve: 

 

 

 This is because ∆si is always positive,  

whereas ∆xi and ∆yi change sign when  

we reverse the orientation of C.  

   , ,
C C

f x y ds f x y ds

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LINE INTEGRALS IN SPACE 

We now suppose that C is a smooth space 

curve given by the parametric equations 

 

x = x(t) y = y(t) a ≤ t ≤ b 

 

or by a vector equation  

r(t) = x(t) i + y(t) j + z(t) k 



LINE INTEGRALS IN SPACE 

Suppose f is a function of three variables that 

is continuous on some region containing C. 

 

 Then, we define the line integral of f along C 

(with respect to arc length) in a manner  

similar to that for plane curves: 

   * * *

1

, , lim , ,
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LINE INTEGRALS IN SPACE 

We evaluate it using a formula similar to 

Formula 3: 

 

      
2 2 2

, ,
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C
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a
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Formula/Equation 9 



LINE INTEGRALS IN SPACE 

Observe that the integrals in both Formulas  

3 and 9 can be written in the more compact 

vector notation  

    '
b

a
f t t dt r r



LINE INTEGRALS IN SPACE 

For the special case f(x, y, z) = 1,  

we get:  

 

 

where L is the length of the curve C.  

 

 

 '
b

C a
ds t dt L   r



LINE INTEGRALS IN SPACE 

Line integrals along C with respect to  

x, y, and z can also be defined.  

 

 For example,  

   

        
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LINE INTEGRALS IN SPACE 

Thus, as with line integrals in the plane,  

we evaluate integrals of the form 

 

 

by expressing everything (x, y, z, dx, dy, dz)  

in terms of the parameter t. 

     , , , , , ,
C

P x y z dx Q x y z dy R x y z dz 

Formula 10 



LINE INTEGRALS IN SPACE 

Evaluate                      

 

where C is the circular helix  

given by the equations  

  x = cos t  

  y = sin t  

  z = t  

0 ≤ t ≤ 2π 

Example 5 

sin
C

y z ds



LINE INTEGRALS IN SPACE 

Formula 9 gives: 
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LINE INTEGRALS IN SPACE 

Evaluate  

     ∫C y dx + z dy + x dz  

 

where C consists of the line segment C1  

from (2, 0, 0) to (3, 4, 5), followed by  

the vertical line segment C2 from (3, 4, 5)  

to (3, 4, 0). 

Example 6 



LINE INTEGRALS IN SPACE 

The curve C is shown. 

 

 Using Equation 8,  

we write C1 as:  

 

r(t) = (1 – t)<2, 0, 0>  

  + t <3, 4, 5>  

     = <2 + t, 4t, 5t> 



LINE INTEGRALS IN SPACE 

 Alternatively, in parametric form,  

we write C1 as:  

 

  x = 2 + t 

     y = 4t 

     z = 5t 

 

0 ≤ t ≤ 1 



LINE INTEGRALS IN SPACE 

 Thus, 
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LINE INTEGRALS IN SPACE 

Likewise, C2 can be written in the form 

 

r(t) = (1 – t) <3, 4, 5> + t <3, 4, 0>  

                  = <3, 4, 5 – 5t> 

or        

 x = 3       y = 4    z = 5 – 5t     0 ≤ t ≤ 1 



LINE INTEGRALS IN SPACE 

Then, dx = 0 = dy. 

 

So, 

 

 

 Adding the values of these integrals,  

we obtain: 
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LINE INTEGRALS OF VECTOR FIELDS 

Recall that the work done  

by a variable force f(x) in moving a particle 

from a to b along the x-axis is: 

 
b

a
W f x dx 



LINE INTEGRALS OF VECTOR FIELDS 

We found that the work done by a constant 

force F in moving an object  

from a point P to another point in space is:  

    

   W = F . D  

 

where D =         is the displacement vector. PQ



LINE INTEGRALS OF VECTOR FIELDS 

Now, suppose that  

    

   F =  P i + Q j + R k  

 

is a continuous force field on     ,  

such as:  

 The gravitational field 

 The electric force field 

 °
3



LINE INTEGRALS OF VECTOR FIELDS 

A force field on      could be regarded as  

a special case where R = 0 and P and Q 

depend only on x and y.  

 

 We wish to compute the work done by  

this force in moving a particle along  

a smooth curve C. 

 °
3



LINE INTEGRALS OF VECTOR FIELDS 

We divide C into subarcs Pi-1Pi with  

lengths ∆si by dividing the parameter 

interval [a, b] into subintervals of equal 

width. 



LINE INTEGRALS OF VECTOR FIELDS 

The first figure shows the two-dimensional 

case.  

The second shows the three-dimensional one.  



LINE INTEGRALS OF VECTOR FIELDS 

Choose a point Pi
*(xi

*, yi
*, zi

*) on  

the i th subarc corresponding to  

the parameter value ti
*. 



LINE INTEGRALS OF VECTOR FIELDS 

If ∆si is small, then as the particle moves  

from Pi-1 to Pi along the curve, it proceeds 

approximately in the direction of T(ti
*),  

the unit tangent vector  

at Pi
*.  



LINE INTEGRALS OF VECTOR FIELDS 

Thus, the work done by the force F  

in moving the particle Pi-1 from to Pi  

is approximately  

 

  F(xi
*, yi

*, zi
*) . [∆si T(ti

*)]  

  = [F(xi
*, yi

*, zi
*) . T(ti

*)] ∆si 



VECTOR FIELDS 

The total work done in moving the particle 

along C is approximately 

 

 

 

where T(x, y, z) is the unit tangent vector  

at the point (x, y, z) on C. 

* * * * * *

1

( , , ) ( , , )
n

i i i i i i i

i

x y z x y z s


    F T

Formula 11 



VECTOR FIELDS 

Intuitively, we see that these 

approximations ought to become  

better as n becomes larger. 



VECTOR FIELDS 

Thus, we define the work W done by  

the force field F as the limit of the Riemann 

sums in Formula 11, namely, 

 

 

 

 This says that work is the line integral  

with respect to arc length of the tangential 

component of the force. 

Equation 12 

   , , , ,
C C

W x y z x y z ds ds    F T F T



VECTOR FIELDS 

If the curve C is given by the vector equation  

 

  r(t) = x(t) i + y(t) j + z(t) k  

 

then  

   T(t) = r’(t)/|r’(t)| 



VECTOR FIELDS 

So, using Equation 9, we can rewrite  

Equation 12 in the form 

  
 

 
 

    
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


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F r r
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VECTOR FIELDS 

This integral is often abbreviated  

as    ∫C F . dr  

and occurs in other areas of physics as well.  

 

 

 Thus, we make the following definition for  

the line integral of any continuous vector field.  



VECTOR FIELDS 

Let F be a continuous vector field defined on  

a smooth curve C given by a vector function  

r(t), a ≤ t ≤ b.  

 

Then, the line integral of F along C is:   

Definition 13 

    '
b

C a C
d t t dt ds      F r F r r F T



VECTOR FIELDS 

When using Definition 13, remember F(r(t))  

is just an abbreviation for  

     F(x(t), y(t), z(t)) 

 

 So, we evaluate F(r(t)) simply by putting  

  x = x(t), y = y(t), and z = z(t)  

in the expression for F(x, y, z). 

 

 Notice also that we can formally write dr = r’(t) dt.  



VECTOR FIELDS 

Find the work done by the force field  

   

     F(x, y) = x2 i – xy j  

 

in moving a particle along  

the quarter-circle  

    r(t) = cos t i + sin t j,    0 ≤ t ≤ π/2  

Example 7 



VECTOR FIELDS 

Since x = cos t and y = sin t,  

we have:  

  F(r(t)) = cos2t i – cos t sin t j 

and  

r’(t) = –sin t i + cos t j 

Example 7 



VECTOR FIELDS 

Therefore, the work done is: 

    

 
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Example 7 



VECTOR FIELDS 

The figure shows the force field and  

the curve in Example 7. 

 

 The work done is  

negative because  

the field impedes  

movement along  

the curve. 



VECTOR FIELDS 

Although ∫C F . dr = ∫C F . T ds and integrals 

with respect to arc length are unchanged 

when orientation is reversed, it is still true  

that: 

 

 

 This is because the unit tangent vector T  

is replaced by its negative when C is replaced  

by –C. 

C C
d d


    F r F r

Note 



VECTOR FIELDS 

Evaluate    

   ∫C F . dr  

where: 

 

 F(x, y, z) = xy i + yz j + zx k 

 C is the twisted cubic given by 

 

  x = t     y = t2     z = t3       0 ≤ t ≤ 1 

Example 8 



VECTOR FIELDS 

We have:  

    

   r(t) = t i + t2 j + t3 k 

 

    r’(t) = i + 2t j + 3t2 k 

 

 F(r(t)) = t3 i + t5 j + t4 k 

Example 8 



VECTOR FIELDS 

Thus,  

Example 8 
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VECTOR FIELDS 

The figure shows the twisted cubic  

in Example 8 and some typical vectors acting 

at three points on C.  



VECTOR & SCALAR FIELDS 

Finally, we note the connection  

between line integrals of vector fields  

and line integrals of scalar fields.  



VECTOR & SCALAR FIELDS 

Suppose the vector field F on       is given  

in component form by: 

         

     F = P i + Q j + R k 

 

 We use Definition 13 to compute  

its line integral along C, as follows. 

 °
3



VECTOR & SCALAR FIELDS 
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VECTOR & SCALAR FIELDS 

However, that last integral is precisely  

the line integral in Formula 10.  

 

Hence, we have:  

 

 

where F = P i + Q j + R k 

C C
d Pdx Qdy Rdz    F r



VECTOR & SCALAR FIELDS 

For example, the integral  

    ∫C y dx + z dy + x dz  

in Example 6 could be expressed as   

      ∫C F . dr  

where  

  F(x, y, z) = y i + z j + x k 


