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13.3 

Fundamental Theorem  

for Line Integrals 

In this section, we will learn about: 

The Fundamental Theorem for line integrals  

and determining conservative vector fields.  

VECTOR CALCULUS 



FTC2 

Recall from  

the Fundamental Theorem of Calculus  

(FTC2) can be written as: 

 

 

where F’ is continuous on [a, b]. 
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Equation 1  



We also called Equation 1 the Net 

Change Theorem: 

 

 

 The integral of a rate of change is  

the net change. 

NET CHANGE THEOREM 



FUNDAMENTAL THEOREM (FT) FOR LINE INTEGRALS 

Suppose we think of the gradient vector        

of a function f of two or three variables as  

a sort of derivative of f. 

 

Then, the following theorem can be  

regarded as a version of the Fundamental 

Theorem for line integrals. 

f



Let C be a smooth curve given by the vector 

function r(t), a ≤ t ≤ b. 

Let f be a differentiable function of two or  

three variables whose gradient vector        

is continuous on C.  

Then, 

f
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FT FOR LINE INTEGRALS Theorem 2  



Theorem 2 says that we can evaluate the line 

integral of a conservative vector field  

(the gradient vector field of the potential 

function f) simply by knowing the value of f  

at the endpoints of C. 

 

 In fact, it says that the line integral of        

is the net change in f. 
f

NOTE 



If f is a function of two variables and C is  

a plane curve with initial point A(x1, y1) and 

terminal point B(x2, y2), Theorem 2  

becomes: 
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NOTE 



If f is a function of three variables and C is  

a space curve joining the point A(x1, y1, z1)  

to the point B(x2, y2, z2),  

we have: 
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NOTE 



Let’s prove Theorem 2 for this 

case. 

FT FOR LINE INTEGRALS 



Using Definition 13 in Section 12.2, we have: 

 

 

 

 

 

 

 The last step follows from the FTC (Equation 1). 
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FT FOR LINE INTEGRALS Proof  



Though we have proved Theorem 2  

for smooth curves, it is also true for 

piecewise-smooth curves.  

 

 This can be seen by subdividing C into  

a finite number of smooth curves and  

adding the resulting integrals. 

FT FOR LINE INTEGRALS 



Find the work done by the gravitational field 

 

 

in moving a particle with mass m from  

the point (3, 4, 12) to the point (2, 2, 0)  

along a piecewise-smooth curve C.  

 

 See Example 4 in Section 12.1 
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FT FOR LINE INTEGRALS Example 1  



From Section 12.1, we know that F is  

a conservative vector field and, in fact,  

            , where: fF
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FT FOR LINE INTEGRALS Example 1  



So, by Theorem 2, the work done is: 
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FT FOR LINE INTEGRALS Example 1  



PATHS 

Suppose C1 and C2 are two piecewise-smooth 

curves (which are called paths) that have  

the same initial point A and terminal point B. 

 

We know from Example 4 in Section 12.2  

that, in general, 
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However, one implication of Theorem 2  

is that 

 

whenever       is continuous. 

 

 That is, the line integral of a conservative  

vector field depends only on the initial point  

and terminal point of a curve. 
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CONSERVATIVE VECTOR FIELD 

f



In general, if F is a continuous vector field  

with domain D, we say that the line integral  

     is independent of path if  

 

 

for any two paths C1 and C2 in D that  

have the same initial and terminal points. 

C
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INDEPENDENCE OF PATH 



With this terminology, we can say  

that: 

 
 Line integrals of conservative vector fields  

are independent of path. 

INDEPENDENCE OF PATH 



CLOSED CURVE 

A curve is called closed if its terminal 

point coincides with its initial point,  

that is,  

   r(b) = r(a) 



Suppose: 

 

 

               is independent of path in D. 

 

 C is any closed path in D 

C
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INDEPENDENCE OF PATH 



Then, we can choose any two points A  

and B on C and regard C as:  

 
 Being composed of the path C1 from A to B  

followed by the path C2 from B to A. 

INDEPENDENCE OF PATH 



Then, 

 

 

 

 

 This is because C1 and –C2 have the same  

initial and terminal points. 
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INDEPENDENCE OF PATH 



Conversely, if it is true that                   

whenever C is a closed path in D, then  

we demonstrate independence of path  

as follows. 

0
C
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INDEPENDENCE OF PATH 



Take any two paths C1 and C2 from A to B  

in D and define C to be the curve consisting  

of C1 followed by –C2. 

INDEPENDENCE OF PATH 



Then, 

 

 

 

Hence, 

 

 So, we have proved the following theorem. 
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INDEPENDENCE OF PATH 



              is independent of path in D  

if and only if:                     

 

 

for every closed path C in D. 

C
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INDEPENDENCE OF PATH Theorem 3  



We know that the line integral of any 

conservative vector field F is independent  

of path. 

 

It follows that                    for any closed path. 0
C

d  F r

INDEPENDENCE OF PATH 



The physical interpretation is  

that: 

 

 The work done by a conservative force field  

(such as the gravitational or electric field in  

Section 13.1) as it moves an object around  

a closed path is 0. 

PHYSICAL INTERPRETATION 



The following theorem says that the only 

vector fields that are independent of path 

are conservative. 

 

 It is stated and proved for plane curves. 

 

 However, there is a similar version for  

space curves. 

INDEPENDENCE OF PATH 



We assume that D is open—which means 

that, for every point P in D, there is a disk  

with center P that lies entirely in D. 

 

 

 So, D doesn’t contain any of its  

boundary points. 

INDEPENDENCE OF PATH 



In addition, we assume that D is 

connected. 

 

 

 This means that any two points in D  

can be joined by a path that lies in D. 

INDEPENDENCE OF PATH 



Suppose F is a vector field that is continuous 

on an open, connected region D.  

 

If              is independent of path in D, then  

F is a conservative vector field on D. 

 

 That is, there exists a function f  

such that 

C
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CONSERVATIVE VECTOR FIELD Theorem 4  



Let A(a, b) be a fixed point in D.  

 

We construct the desired potential function f 

by defining 

 

for any point in (x, y) in D. 
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CONSERVATIVE VECTOR FIELD Proof  



As              is independent of path, it does  

not matter which path C from (a, b) to (x, y)  

is used to evaluate f(x, y). 

 

Since D is open, there exists a disk  

contained in D with center (x, y). 

C
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CONSERVATIVE VECTOR FIELD Proof  



Choose any point (x1, y) in the disk with x1 < x. 

 

Then, let C consist of any path C1 from (a, b) 

to (x1, y) followed by  

the horizontal line  

segment C2 from  

(x1, y) to (x, y). 

CONSERVATIVE VECTOR FIELD Proof  



Then, 

 

 

 

 Notice that the first of these integrals  

does not depend on x. 

 Hence,  
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CONSERVATIVE VECTOR FIELD Proof  



If we write F = P i +Q j,  

then 

 

 

 

On C2, y is constant; so, dy = 0. 
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CONSERVATIVE VECTOR FIELD Proof  



Using t as the parameter, where x1 ≤ t ≤ x,  

we have: 

 

 

 

by Part 1 of the Fundamental Theorem  

of Calculus (FTC1). 
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CONSERVATIVE VECTOR FIELD Proof  



A similar argument, using a vertical line 

segment, shows that: 
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CONSERVATIVE VECTOR FIELD Proof  



Thus, 

 

 

 

 

 

 This says that F is conservative. 
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CONSERVATIVE VECTOR FIELD Proof  



DETERMINING CONSERVATIVE VECTOR FIELDS 

The question remains:  

 

 How is it possible to determine whether  

or not a vector field is conservative? 



DETERMINING CONSERVATIVE VECTOR FIELDS 

Suppose it is known that F = P i + Q j  

is conservative—where P and Q have 

continuous first-order partial derivatives. 

 

 Then, there is a function f such that             , 

that is, 

F f
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DETERMINING CONSERVATIVE VECTOR FIELDS 

Therefore, by Clairaut’s Theorem, 
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CONSERVATIVE VECTOR FIELDS 

If  

  F(x, y) = P(x, y) i + Q(x, y) j  

 

is a conservative vector field, where P and Q 

have continuous first-order partial derivatives 

on a domain D, then, throughout D,  

we have: P Q

y x

 


 

Theorem 5  



CONSERVATIVE VECTOR FIELDS 

The converse of Theorem 5  

is true only for a special type  

of region. 



SIMPLE CURVE 

To explain this, we first need the concept of  

a simple curve—a curve that doesn’t intersect 

itself anywhere between its endpoints. 

 

 r(a) = r(b) for a simple,  

closed curve. 

 

 However, r(t1) ≠ r(t2)  

when a < t1 < t2 < b. 



CONSERVATIVE VECTOR FIELDS 

In Theorem 4, we needed an open, 

connected region.  

 

 For the next theorem, we need  

a stronger condition. 



SIMPLY-CONNECTED REGION 

A simply-connected region in the plane is  

a connected region D such that every simple 

closed curve in D encloses only points in D. 

 

 

 Intuitively, it contains  

no hole and can’t  

consist of two  

separate pieces. 



CONSERVATIVE VECTOR FIELDS 

In terms of simply-connected regions, we now 

state a partial converse to Theorem 5 that 

gives a convenient method for verifying that  

a vector field on      is conservative. 

 

 The proof will be sketched in Section 12.3  

as a consequence of Green’s Theorem. 

 °
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CONSERVATIVE VECTOR FIELDS 

Let F = P i + Q j be a vector field on an open 

simply-connected region D.  

 

Suppose that P and Q have continuous  

first-order derivatives and  

throughout D. 

 

 Then, F is conservative. 
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Theorem 6  



CONSERVATIVE VECTOR FIELDS 

Determine whether or not the vector field  

  F(x, y) = (x – y) i + (x – 2) j  

is conservative. 

 

 Let P(x, y) = x – y and Q(x, y) = x – 2. 

 

 Then, 

 

 As ∂P/∂y ≠ ∂Q/∂x, F is not conservative  

by Theorem 5. 
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Example 2  



CONSERVATIVE VECTOR FIELDS 

The vectors in the figure that start on  

the closed curve C all appear to point in 

roughly the same direction as C. 

 

 Thus, it looks as if  

 

 

and so F is not conservative. 

 

 The calculation in Example  

2 confirms this impression. 
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CONSERVATIVE VECTOR FIELDS 

Determine whether or not the vector field  

 F(x, y) = (3 + 2xy) i + (x2 – 3y2) j  

is conservative. 

 

 

 Let P(x, y) = 3 + 2xy and Q(x, y) = x2 – 3y2. 

 

 Then, 
2
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Example 3  



CONSERVATIVE VECTOR FIELDS 

 Also, the domain of F is the entire plane  

(D =      ), which is open and simply-connected. 

 

 

 Therefore, we can apply Theorem 6 and  

conclude that F is conservative. 

Example 3  

 °
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CONSERVATIVE VECTOR FIELDS 

Some vectors near the curves C1 and C2 in 

the figure point in approximately the same 

direction as the curves, whereas others point 

in the opposite direction. 

 

 So, it appears plausible  

that line integrals around  

all closed paths are 0. 

 Example 3 shows that F  

is indeed conservative. 



FINDING POTENTIAL FUNCTION 

In Example 3, Theorem 6 told us that F  

is conservative. 

 

However, it did not tell us how to find  

the (potential) function f such that             . fF



FINDING POTENTIAL FUNCTION 

The proof of Theorem 4 gives us a clue  

as to how to find f. 

 

 

 We use “partial integration” as in  

the following example. 



FINDING POTENTIAL FUNCTION 

a. If F(x, y) = (3 + 2xy) i + (x2 – 3y2) j,  

find a function f such that             .  

 

b. Evaluate the line integral             ,  

where C is the curve given by  

r(t) = et sin t i + et cos t j          0 ≤ t ≤ π 

fF

C
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Example 4  



FINDING POTENTIAL FUNCTION 

From Example 3, we know that F is 

conservative. 

So, there exists a function f with             ,  

that is,  

   fx(x, y) = 3 + 2xy 

 

fy(x, y) = x2 – 3y2 

f  F

E. g. 4 a—Eqns. 7 & 8  



FINDING POTENTIAL FUNCTION 

Integrating Equation 7 with respect to x,  

we obtain:  

     f (x, y) = 3x + x2y + g(y) 

 

 

 Notice that the constant of integration is  

a constant with respect to x, that is, a function  

of y, which we have called g(y). 

E. g. 4 a—Eqn. 9  



FINDING POTENTIAL FUNCTION 

Next, we differentiate both sides  

of Equation 9 with respect to y:  

   

  fy(x, y) = x2 + g’(y) 

E. g 4 a—Eqn. 10  



FINDING POTENTIAL FUNCTION 

Comparing Equations 8 and 10,  

we see that:  

   g’(y) = –3y2 

 

 

 Integrating with respect to y,  

we have:  

   g(y) = –y3 + K 

 

where K is a constant. 

Example 4 a  



FINDING POTENTIAL FUNCTION 

Putting this in Equation 9,  

we have  

     f(x, y) = 3x + x2y – y3 + K 

 

as the desired potential function. 

Example 4 a  



FINDING POTENTIAL FUNCTION 

To use Theorem 2, all we have to know  

are the initial and terminal points of C,  

namely,  

   r(0) = (0, 1) 

    

   r(π) = (0, –eπ) 

Example 4 b  



FINDING POTENTIAL FUNCTION 

In the expression for f(x, y) in part a,  

any value of the constant K will do. 

 

 So, let’s choose K = 0. 

Example 4 b  



FINDING POTENTIAL FUNCTION 

Then, we have: 

 

 

 

 

 This method is much shorter than  

the straightforward method for evaluating  

line integrals that we learned in Section 13.2 
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Example 4 b  



CONSERVATIVE VECTOR FIELDS 

A criterion for determining whether or not  

a vector field F on      is conservative is 

given in Section 13.5 

 °
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FINDING POTENTIAL FUNCTION 

Meanwhile, the next example shows  

that the technique for finding the potential 

function is much the same as for vector  

fields on      .  °
2



FINDING POTENTIAL FUNCTION 

If  

F(x, y, z) = y2 i + (2xy + e3z) j + 3ye3z k 

 

find a function f such that             . f  F

Example 5  



FINDING POTENTIAL FUNCTION 

If there is such a function f,  

then 

   fx(x, y, z) = y2  

 

   fy(x, y, z) = 2xy + e3z  

 

   fz(x, y, z) =3ye3z 

E. g. 5—Eqns. 11-13  



FINDING POTENTIAL FUNCTION 

Integrating Equation 11 with respect to x,  

we get:  

     f(x, y, z) = xy2 + g(y, z)  

 

where g(y, z) is a constant  

with respect to x. 

E. g. 5—Equation 14 



FINDING POTENTIAL FUNCTION 

Then, differentiating Equation 14 with  

respect to y, we have:  

    

  fy(x, y, z) = 2xy + gy(y, z) 

 

 Comparison with Equation 12  

gives:  

   gy(y, z) = e3z 

Example 5  



FINDING POTENTIAL FUNCTION 

Thus,  

  g(y, z) = ye3z + h(z) 

 

 

 So, we rewrite Equation 14 as:  

 

  f(x, y, z) = xy2 + ye3z + h(z) 

Example 5  



FINDING POTENTIAL FUNCTION 

Finally, differentiating with respect to z  

and comparing with Equation 13,  

we obtain:  

   h’(z) = 0 

 

 Therefore, h(z) = K, a constant. 

Example 5  



FINDING POTENTIAL FUNCTION 

The desired function is:  

   

  f(x, y, z) = xy2 + ye3z + K 

 

 

 It is easily verified that            . f  F

Example 5  



CONSERVATION OF ENERGY 

Let’s apply the ideas of this chapter to  

a continuous force field F that moves  

an object along a path C given by:  

      

   r(t), a ≤ t ≤ b  

where: 

 r(a) = A is the initial point of C. 

 r(b) = B is the terminal point of C. 



By Newton’s Second Law of Motion,  

the force F(r(t)) at a point on C is related to  

the acceleration a(t) = r’’(t) by the equation 

 

F(r(t)) = mr’’(t) 

CONSERVATION OF ENERGY 



So, the work done by the force on  

the object is: 
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CONSERVATION OF ENERGY 



CONSERVATION OF ENERGY 

       (Th. 3,  

       Sec. 13.2,  

       Formula 4) 

 

        (FTC) 
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Therefore, 

 

 

 

where v = r’ is the velocity. 
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CONSERVATION OF ENERGY Equation 15  



The quantity                  

 

that is, half the mass times the square  

of the speed, is called the kinetic energy  

of the object. 

21
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KINETIC ENERGY 



Therefore, we can rewrite Equation 15  

as:  

      W = K(B) – K(A) 

 
 

 This says that the work done by the force field  

along C is equal to the change in kinetic energy  

at the endpoints of C. 

CONSERVATION OF ENERGY Equation 16  



Now, let’s further assume that F is  

a conservative force field. 

 

 

 That is, we can write            . fF

CONSERVATION OF ENERGY 



In physics, the potential energy of an object 

at the point (x, y, z) is defined as:  

 

  P(x, y, z) = –f(x, y, z) 

 

 So, we have               . P F

POTENTIAL ENERGY 



Then, by Theorem 2, we have: 
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CONSERVATION OF ENERGY 



Comparing that equation with  

Equation 16, we see that:  

    

  P(A) + K(A) = P(B) + K(B) 

CONSERVATION OF ENERGY 



P(A) + K(A) = P(B) + K(B)  

says that:  

 

 If an object moves from one point A to  

another point B under the influence of  

a conservative force field, then the sum  

of its potential energy and its kinetic energy  

remains constant. 

CONSERVATION OF ENERGY 



This is called the Law of Conservation  

of Energy. 

 

 It is the reason the vector field is called 

conservative. 

LAW OF CONSERVATION OF ENERGY 


