

PARTIAL DERIVATIVES

11.6

Directional Derivatives and the Gradient Vector

In this section, we will learn how to find:
The rate of changes of a function of two or more variables in any direction.

INTRODUCTION

This weather map shows a contour map of the temperature function $T(x, y)$

 for:- The states of California and Nevada at 3:00 PM on a day in October.

INTRODUCTION

The level curves, or isothermals, join locations with the same

 temperature.

INTRODUCTION

The partial derivative T_{x} is the rate of change

 of temperature with respect to distance if we travel east from Reno.- T_{y} is the rate of change if we travel north.

INTRODUCTION

However, what if we want to know the rate of change when we travel southeast (toward Las Vegas), or in some other direction?

DIRECTIONAL DERIVATIVE

In this section, we introduce a type of derivative, called a directional derivative, that enables us to find:

- The rate of change of a function of two or more variables in any direction.

DIRECTIONAL DERIVATIVES
 Equations 1

Recall that, if $z=f(x, y)$, then the partial derivatives f_{x} and f_{y} are defined as:

$$
\begin{aligned}
& f_{x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h} \\
& f_{y}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
\end{aligned}
$$

DIRECTIONAL DERIVATIVES
 Equations 1

They represent the rates of change of z in the x - and y-directions-that is, in the directions of the unit vectors \mathbf{i} and \mathbf{j}.

DIRECTIONAL DERIVATIVES

Suppose that we now wish to find the rate of change of z at $\left(x_{0}, y_{0}\right)$ in the direction of an arbitrary unit vector $\mathbf{u}=\langle a, b\rangle$.

DIRECTIONAL DERIVATIVES

To do this, we consider the surface S
with equation $z=f(x, y)$ [the graph of f]
and we let $z_{0}=f\left(x_{0}, y_{0}\right)$.

- Then, the point $P\left(x_{0}, y_{0}, z_{0}\right)$ lies on S.

DIRECTIONAL DERIVATIVES

The vertical plane that passes through P in the direction of \mathbf{u} intersects S in a curve C.

DIRECTIONAL DERIVATIVES

The slope of the tangent line T to C at the point P is the rate of change of z in the direction of \mathbf{u}.

DIRECTIONAL DERIVATIVES

Now, let:

- $Q(x, y, z)$ be another point on C.
- P', Q' be the projections of P, Q on the $x y$-plane.

DIRECTIONAL DERIVATIVES

Then, the vector $\overrightarrow{P^{\prime} Q^{\prime}}$ is parallel to \mathbf{u}.

So,
$\overrightarrow{P^{\prime} Q^{\prime}}=h \mathbf{u}$

$$
=\langle h a, h b\rangle
$$

for some scalar h.

DIRECTIONAL DERIVATIVES

Therefore,

$$
x-x_{0}=h a
$$

$$
y-y_{0}=h b
$$

DIRECTIONAL DERIVATIVES

So,

$$
\begin{aligned}
x & =x_{0}+h a \\
y & =y_{0}+h b \\
\frac{\Delta z}{h} & =\frac{z-z_{0}}{h} \\
& =\frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0,} y_{0}\right)}{h}
\end{aligned}
$$

DIRECTIONAL DERIVATIVE

If we take the limit as $h \rightarrow 0$, we obtain the rate of change of z (with respect to distance) in the direction of \mathbf{u}.

- This is called the directional derivative of f in the direction of \mathbf{u}.

DIRECTIONAL DERIVATIVE

The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b\rangle$ is:

$$
\begin{aligned}
& D_{\mathbf{u}} f\left(x_{0}, y_{0}\right) \\
& =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
\end{aligned}
$$

if this limit exists.

DIRECTIONAL DERIVATIVES

Comparing Definition 2 with Equations 1, we see that:

- If $\mathbf{u}=\mathbf{i}=\langle 1,0\rangle$, then $D_{i} f=f_{x}$.
- If $\mathbf{u}=\mathbf{j}=\langle 0,1\rangle$, then $D_{j} f=f_{y}$.

DIRECTIONAL DERIVATIVES

In other words, the partial derivatives of f with respect to x and y are just special cases of the directional derivative.

DIRECTIONAL DERIVATIVES
 Example 1

Use this weather map to estimate the value

 of the directional derivative of the temperature function at Reno in the southeasterly direction.

DIRECTIONAL DERIVATIVES
 Example 1

The unit vector directed toward
the southeast is:

$$
\mathbf{u}=(\mathbf{i}-\mathbf{j}) / \sqrt{2}
$$

- However, we won't need to use this expression.

DIRECTIONAL DERIVATIVES
 Example 1

We start by drawing a line through Reno

 toward the southeast.

DIRECTIONAL DERIVATIVES
 Example 1

We approximate the directional derivative

$D_{u} T$ by:

- The average rate of change of the temperature between the points where this line intersects the isothermals

$$
T=50 \text { and } T=60 .
$$

DIRECTIONAL DERIVATIVES
 Example 1

The temperature at the point southeast of Reno is $T=60^{\circ} \mathrm{F}$.

The temperature at the point northwest of Reno is $T=50^{\circ} \mathrm{F}$.

DIRECTIONAL DERIVATIVES
 Example 1

The distance between these points looks to be about 75 miles.

DIRECTIONAL DERIVATIVES
 Example 1

So, the rate of change of the temperature in the southeasterly direction is:

$$
\begin{aligned}
D_{\mathbf{u}} T & \approx \frac{60-50}{75} \\
& =\frac{10}{75} \\
& \approx 0.13^{\circ} \mathrm{F} / \mathrm{mi}
\end{aligned}
$$

DIRECTIONAL DERIVATIVES

When we compute the directional derivative of a function defined by
a formula, we generally use the following theorem.

DIRECTIONAL DERIVATIVES

Theorem 3
If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=\langle a, b\rangle$ and

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b
$$

DIRECTIONAL DERIVATIVES
 Proof

 If we define a function g of the single variable h by$$
g(h)=f\left(x_{0}+h a, y_{0}+h b\right)
$$

then, by the definition of a derivative, we have the following equation.

DIRECTIONAL DERIVATIVES

Proof-Equation 4
$g^{\prime}(0)$
$=\lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}$
$=D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$

DIRECTIONAL DERIVATIVES

On the other hand, we can write:

$$
g(h)=f(x, y)
$$

where:

- $x=x_{0}+h a$
- $y=y_{0}+h b$

DIRECTIONAL DERIVATIVES

Proof

 Hence, the Chain Rule (Theorem 2 in Section 10.5) gives:$$
\begin{aligned}
g^{\prime}(h) & =\frac{\partial f}{\partial x} \frac{d x}{d h}+\frac{\partial f}{\partial y} \frac{d y}{d h} \\
& =f_{x}(x, y) a+f_{y}(x, y) b
\end{aligned}
$$

DIRECTIONAL DERIVATIVES

Proof-Equation 5
If we now put $h=0$,
then

$$
\begin{aligned}
& x=x_{0} \\
& y=y_{0}
\end{aligned}
$$

and

$$
g^{\prime}(0)=f_{x}\left(x_{0}, y_{0}\right) a+f_{y}\left(x_{0}, y_{0}\right) b
$$

DIRECTIONAL DERIVATIVES
 Proof

Comparing Equations 4 and 5, we see that:

$$
\begin{aligned}
& D_{\mathbf{u}} f\left(x_{0}, y_{0}\right) \\
& =f_{x}\left(x_{0}, y_{0}\right) a+f_{y}\left(x_{0}, y_{0}\right) b
\end{aligned}
$$

DIRECTIONAL DERIVATIVES

Suppose the unit vector u makes an angle θ with the positive x-axis, as shown.

DIRECTIONAL DERIVATIVES

Equation 6

Then, we can write

$$
\mathbf{u}=\langle\cos \theta, \sin \theta\rangle
$$

and the formula in Theorem 3 becomes:

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) \cos \theta+f_{y}(x, y) \sin \theta
$$

DIRECTIONAL DERIVATIVES

Example 2

Find the directional derivative $D_{u} f(x, y)$
if:

- $f(x, y)=x^{3}-3 x y+4 y^{2}$
- \mathbf{u} is the unit vector given by angle $\theta=\pi / 6$

What is $D_{\mathbf{u}} f(1,2)$?

DIRECTIONAL DERIVATIVES

Example 2

Formula 6 gives:

$$
\begin{aligned}
D_{\mathbf{u}} f(x, y) & =f_{x}(x, y) \cos \frac{\pi}{6}+f_{y}(x, y) \sin \frac{\pi}{6} \\
& =\left(3 x^{2}-3 y\right) \frac{\sqrt{3}}{2}+(-3 x+8 y) \frac{1}{2} \\
& =\frac{1}{2}\left[3 \sqrt{3} x^{2}-3 x+(8-3 \sqrt{3}) y\right]
\end{aligned}
$$

DIRECTIONAL DERIVATIVES

Example 2

 Therefore,$$
\begin{aligned}
D_{\mathbf{u}} f(1,2) & =\frac{1}{2}\left[3 \sqrt{3}(1)^{2}-3(1)+(8-3 \sqrt{3})(2)\right] \\
& =\frac{13-3 \sqrt{3}}{2}
\end{aligned}
$$

DIRECTIONAL DERIVATIVES

The directional derivative $D_{\mathrm{u}} f(1,2)$ in Example 2 represents the rate of change of z in the direction of \mathbf{u}.

DIRECTIONAL DERIVATIVES

This is the slope of the tangent line to the curve of intersection of the surface

$$
z=x^{3}-3 x y+4 y^{2}
$$

and the vertical plane through $(1,2,0)$ in the direction of \mathbf{u} shown here.

THE GRADIENT VECTOR

Expression 7

Notice from Theorem 3 that the directional derivative can be written as the dot product of two vectors:

$$
\begin{aligned}
D_{\mathbf{u}} f(x, y) & =f_{x}(x, y) a+f_{y}(x, y) b \\
& =\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \cdot\langle a, b\rangle \\
& =\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \cdot \mathbf{u}
\end{aligned}
$$

THE GRADIENT VECTOR

The first vector in that dot product occurs not only in computing directional derivatives but in many other contexts as well.

THE GRADIENT VECTOR

So, we give it a special name:

- The gradient of f

We give it a special notation too:

- grad f or ∇f, which is read "del f "

THE GRADIENT VECTOR

Definition 8
If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by:

$$
\begin{aligned}
\nabla f(x, y) & =\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \\
& =\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial x} \mathbf{j}
\end{aligned}
$$

THE GRADIENT VECTOR

Example 3

If $f(x, y)=\sin x+e^{x y}$,
then

$$
\begin{aligned}
\nabla f(x, y) & =\left\langle f_{x}, f_{y}\right\rangle \\
& =\left\langle\cos x+y e^{x y}, x e^{x y}\right\rangle
\end{aligned}
$$

$$
\nabla f(0,1)=\langle 2,0\rangle
$$

THE GRADIENT VECTOR

Equation 9

With this notation for the gradient vector, we

 can rewrite Expression 7 for the directional derivative as:$$
D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \cdot \mathbf{u}
$$

- This expresses the directional derivative in the direction of \mathbf{u} as the scalar projection of the gradient vector onto \mathbf{u}.

THE GRADIENT VECTOR

Example 4

Find the directional derivative of the function

$$
f(x, y)=x^{2} y^{3}-4 y
$$

at the point $(2,-1)$ in the direction of the vector $\mathbf{v}=2 \mathbf{i}+5 \mathbf{j}$.

THE GRADIENT VECTOR
 Example 4

We first compute the gradient vector at $(2,-1)$:

$$
\begin{aligned}
& \nabla f(x, y)=2 x y^{3} \mathbf{i}+\left(3 x^{2} y^{2}-4\right) \mathbf{j} \\
& \nabla f(2,-1)=-4 \mathbf{i}+8 \mathbf{j}
\end{aligned}
$$

THE GRADIENT VECTOR

Example 4

Note that \mathbf{v} is not a unit vector.

However, since $|\mathbf{v}|=\sqrt{29}$, the unit vector in the direction of \mathbf{v} is:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{2}{\sqrt{29}} \mathbf{i}+\frac{5}{\sqrt{29}} \mathbf{j}
$$

THE GRADIENT VECTOR

Example 4

Therefore, by Equation 9, we have:

$$
\begin{aligned}
D_{\mathbf{u}} f(2,-1) & =\nabla f(2,-1) \cdot \mathbf{u} \\
& =(-4 \mathbf{i}+8 \mathbf{j}) \cdot\left(\frac{2}{\sqrt{29}} \mathbf{i}+\frac{5}{\sqrt{29}} \mathbf{j}\right) \\
& =\frac{-4 \cdot 2+8 \cdot 5}{\sqrt{29}}=\frac{32}{\sqrt{29}}
\end{aligned}
$$

FUNCTIONS OF THREE VARIABLES

For functions of three variables, we can

 define directional derivatives in a similar manner.- Again, $D_{\mathrm{u}} f(x, y, z)$ can be interpreted as the rate of change of the function in the direction of a unit vector u.

The directional derivative of f at $\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b, c\rangle$ is:

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}, z_{0}\right)
$$

$$
=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b, z_{0}+h c\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{h}
$$

if this limit exists.

THREE-VARIABLE FUNCTIONS

If we use vector notation, then we can write both Definitions 2 and 10 of the directional derivative in a compact form, as follows.
$D_{\mathbf{u}} f\left(\mathbf{x}_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(\mathbf{x}_{0}+h \mathbf{u}\right)-f\left(\mathbf{x}_{0}\right)}{h}$
where:

$$
\begin{aligned}
& \text { - } \mathbf{x}_{0}=\left\langle x_{0}, y_{0}\right\rangle \text { if } n=2 \\
& -\mathbf{x}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle \text { if } n=3
\end{aligned}
$$

THREE-VARIABLE FUNCTIONS

This is reasonable.

- The vector equation of the line through \mathbf{x}_{0} in the direction of the vector \mathbf{u} is given by $\mathbf{x}=\mathbf{x}_{0}+t \mathbf{u}$ (Equation 1 in Section 12.5).
- Thus, $f\left(\mathbf{x}_{0}+h \mathbf{u}\right)$ represents the value of f at a point on this line.

$$
\begin{aligned}
& D_{\mathbf{u}} f(x, y, z) \\
& =f_{x}(x, y, z) a+f_{y}(x, y, z) b+f_{z}(x, y, z) c
\end{aligned}
$$

THREE-VARIABLE FUNCTIONS

For a function f of three variables, the gradient vector, denoted by ∇f or grad f, is:

$$
\begin{aligned}
& \nabla f(x, y, z) \\
& =\left\langle f_{x}(x, y, z), f_{y}(x, y, z,), f_{z}(x, y, z)\right\rangle
\end{aligned}
$$

For short,

$$
\begin{aligned}
\nabla f & =\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
& =\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
\end{aligned}
$$

THREE-VARIABLE FUNCTIONS

Equation 14

Then, just as with functions of two variables, Formula 12 for the directional derivative can be rewritten as:

$$
D_{\mathbf{u}} f(x, y, z)=\nabla f(x, y, z) \cdot \mathbf{u}
$$

THREE-VARIABLE FUNCTIONS

Example 5

If $f(x, y, z)=x \sin y z$, find:
a. The gradient of f
b. The directional derivative of f at $(1,3,0)$ in the direction of $\mathbf{v}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.

THREE-VARIABLE FUNCTIONS

Example 5 a

The gradient of f is:

$$
\begin{aligned}
& \nabla f(x, y, z) \\
& =\left\langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right\rangle \\
& =\langle\sin y z, x z \cos y z, x y \cos y z\rangle
\end{aligned}
$$

THREE-VARIABLE FUNCTIONS
 Example 5 b

 At (1, 3, 0), we have:$$
\nabla f(1,3,0)=\langle 0,0,3\rangle
$$

The unit vector in the direction of $\mathbf{v}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$ is:

$$
\mathbf{u}=\frac{1}{\sqrt{6}} \mathbf{i}+\frac{2}{\sqrt{6}} \mathbf{j}-\frac{1}{\sqrt{6}} \mathbf{k}
$$

THREE-VARIABLE FUNCTIONS
 Example 5

 Hence, Equation 14 gives:$$
\begin{aligned}
D_{\mathbf{u}} f(1,3,0) & =\nabla f(1,3,0) \cdot \mathbf{u} \\
& =3 \mathbf{k} \cdot\left(\frac{1}{\sqrt{6}} \mathbf{i}+\frac{2}{\sqrt{6}} \mathbf{j}-\frac{1}{\sqrt{6}} \mathbf{k}\right) \\
& =3\left(-\frac{1}{\sqrt{6}}\right)=-\sqrt{\frac{3}{2}}
\end{aligned}
$$

MAXIMIZING THE DIRECTIONAL DERIVATIVE

Suppose we have a function f of two or three variables and we consider all possible directional derivatives of f at a given point.

- These give the rates of change of f in all possible directions.

MAXIMIZING THE DIRECTIONAL DERIVATIVE We can then ask the questions:

- In which of these directions does f change fastest?
- What is the maximum rate of change?

MAXIMIZING THE DIRECTIONAL DERIVATIVE

The answers are provided by the following theorem.

MAXIMIZING DIRECTIONAL DERIV. Theorem 15

Suppose f is a differentiable function of two or three variables.

The maximum value of the directional derivative $D_{\mathbf{u}} f(\mathbf{x})$ is: $|\nabla f(\mathbf{x})|$

- It occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{x})$

MAXIMIZING DIRECTIONAL DERIV. Proof

 From Equation 9 or 14, we have:$$
\begin{aligned}
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u} & =|\nabla f||\mathbf{u}| \cos \theta \\
& =|\nabla f| \cos \theta
\end{aligned}
$$

where θ is the angle between ∇f and \mathbf{u}.

MAXIMIZING DIRECTIONAL DERIV. Proof

The maximum value of $\cos \theta$ is 1.

This occurs when $\theta=0$.

- So, the maximum value of $D_{\mathrm{u}} f$ is: $|\nabla f|$
- It occurs when $\theta=0$, that is, when \mathbf{u} has the same direction as ∇f.

MAXIMIZING DIRECTIONAL DERIV. Example 6

 a. If $f(x, y)=x e^{y}$, find the rate of change of f at the point $P(2,0)$ in the direction from P to $Q(1 / 2,2)$.
MAXIMIZING DIRECTIONAL DERIV. Example 6

b. In what direction does f have the maximum rate of change?

What is this maximum rate of change?

MAXIMIZING DIRECTIONAL DERIV. Example 6 a

 We first compute the gradient vector:$$
\begin{aligned}
\nabla f(x, y) & =\left\langle f_{x}, f_{y}\right\rangle \\
& =\left\langle e^{y}, x e^{y}\right\rangle \\
\nabla f(2,0) & =\langle 1,2\rangle
\end{aligned}
$$

MAXIMIZING DIRECTIONAL DERIV. Example 6 a

The unit vector in the direction of $\overrightarrow{P Q}=\langle-1.5,2\rangle$ is $\mathbf{u}=\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle$.

So, the rate of change of f in the direction from P to Q is:

$$
\begin{aligned}
D_{\mathbf{u}} f(2,0) & =\nabla f(2,0) \cdot u \\
& =\langle 1,2\rangle \cdot\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle \\
& =1\left(-\frac{3}{5}\right)+2\left(\frac{4}{5}\right)=1
\end{aligned}
$$

MAXIMIZING DIRECTIONAL DERIV. Example 6 b

According to Theorem 15, f increases
fastest in the direction of the gradient
vector $\nabla f(2,0)=\langle 1,2\rangle$.

So, the maximum rate of change is:

$$
|\nabla f(2,0)|=|\langle 1,2\rangle|=\sqrt{5}
$$

MAXIMIZING DIRECTIONAL DERIV. Example 7

Suppose that the temperature at a point (x, y, z) in space is given by

$$
T(x, y, z)=80 /\left(1+x^{2}+2 y^{2}+3 z^{2}\right)
$$

where:

- T is measured in degrees Celsius.
- x, y, z is measured in meters.

MAXIMIZING DIRECTIONAL DERIV. Example 7

In which direction does the temperature increase fastest at the point $(1,1,-2)$?

What is the maximum rate of increase?

MAXIMIZING DIRECTIONAL DERIV. Example 7

The gradient of T is:

$$
\begin{aligned}
\nabla T & =\frac{\partial T}{\partial x} \mathbf{i}+\frac{\partial T}{\partial y} \mathbf{j}+\frac{\partial T}{\partial z} \mathbf{k} \\
= & -\frac{160 x}{\left(1+x^{2}+2 y^{2}+3 z^{2}\right)^{2}} \mathbf{i}-\frac{320 y}{\left(1+x^{2}+2 y^{2}+3 z^{2}\right)^{2}} \mathbf{j} \\
& -\frac{480 z}{\left(1+x^{2}+2 y^{2}+3 z^{2}\right)^{2}} \mathbf{k}
\end{aligned}
$$

$$
=\frac{160}{\left(1+x^{2}+2 y^{2}+3 z^{2}\right)^{2}}(-x \mathbf{i}-2 y \mathbf{j}-3 z \mathbf{k})
$$

MAXIMIZING DIRECTIONAL DERIV. Example 7

At the point $(1,1,-2)$, the gradient vector is:

$$
\begin{aligned}
\nabla T(1,1,-2) & =\frac{160}{256}(-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k}) \\
& =\frac{5}{8}(-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k})
\end{aligned}
$$

MAXIMIZING DIRECTIONAL DERIV. Example 7

By Theorem 15, the temperature increases fastest in the direction of the gradient vector

$$
\nabla T(1,1,-2)=\frac{5}{8}(-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k})
$$

- Equivalently, it does so in the direction of $-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k}$ or the unit vector $(-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k}) / \sqrt{41}$

MAXIMIZING DIRECTIONAL DERIV. Example 7

The maximum rate of increase is the length of the gradient vector:

$$
\begin{aligned}
|\nabla T(1,1,-2)| & =\frac{5}{8}|-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k}| \\
& =\frac{5}{8} \sqrt{41}
\end{aligned}
$$

- Thus, the maximum rate of increase of temperature is: $\frac{5}{8} \sqrt{41} \approx 4^{\circ} \mathrm{C} / \mathrm{m}$

TANGENT PLANES TO LEVEL SURFACES

Suppose S is a surface with

 equation$$
F(x, y, z)
$$

- That is, it is a level surface of a function F of three variables.

TANGENT PLANES TO LEVEL SURFACES

Then, let

$$
P\left(x_{0}, y_{0}, z_{0}\right)
$$

be a point on S.

TANGENT PLANES TO LEVEL SURFACES

Then, let C be any curve that lies on the surface S and passes through the point P.

- Recall from Section 10.1 that the curve C is described by a continuous vector function

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle
$$

TANGENT PLANES TO LEVEL SURFACES

Let t_{0} be the parameter value corresponding to P.

- That is,

$$
\mathbf{r}\left(t_{0}\right)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle
$$

TANGENT PLANES
 Equation 16

Since C lies on S, any point $(x(t), y(t), z(t))$ must satisfy the equation of S.

That is,

$$
F(x(t), y(t), z(t))=k
$$

TANGENT PLANES

Equation 17

If x, y, and z are differentiable functions of t and F is also differentiable, then we can use the Chain Rule to differentiate both sides of Equation 16:

$$
\frac{\partial F}{\partial x} \frac{d x}{d t}+\frac{\partial F}{\partial y} \frac{d y}{d t}+\frac{\partial F}{\partial x} \frac{d z}{d t}=0
$$

TANGENT PLANES

However, as $\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle$
and

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

Equation 17 can be written in terms of a dot product as:

$$
\nabla F \cdot \mathbf{r}^{\prime}(t)=0
$$

In particular, when $t=t_{0}$,
we have:

$$
\mathbf{r}\left(t_{0}\right)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle
$$

So,

$$
\nabla F\left(x_{0}, y_{0}, z_{0}\right) \cdot \mathbf{r}^{\prime}\left(t_{0}\right)=0
$$

TANGENT PLANES

Equation 18 says:

- The gradient vector at $P, \nabla F\left(x_{0}, y_{0}, z_{0}\right)$, is perpendicular to the tangent vector $\mathbf{r}^{\prime}\left(t_{0}\right)$ to any curve C on S that passes through P.

TANGENT PLANES

If $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq 0$, it is thus natural to define the tangent plane to the level surface $F(x, y, z)=k$ at $P\left(x_{0}, y_{0}, z_{0}\right)$ as:

- The plane that passes through P and has normal vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$

TANGENT PLANES

Equation 19

Using the standard equation of a plane (Equation 7 in Section 12.5), we can write the equation of this tangent plane as:

$$
\begin{aligned}
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right) & +F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right) \\
& +F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
\end{aligned}
$$

NORMAL LINE

The normal line to S at P is the line:

- Passing through P
- Perpendicular to the tangent plane

TANGENT PLANES

Thus, the direction of the normal line is given by the gradient vector

$$
\nabla F\left(x_{0}, y_{0}, z_{0}\right)
$$

TANGENT PLANES

Equation 20
So, by Equation 3 in Section 12.5,
its symmetric equations are:

$$
\frac{x-x_{0}}{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{y-y_{0}}{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{z-z_{0}}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}
$$

TANGENT PLANES

Consider the special case in which the equation of a surface S is of the form

$$
z=f(x, y)
$$

- That is, S is the graph of a function f of two variables.

TANGENT PLANES

Then, we can rewrite the equation as

$$
F(x, y, z)=f(x, y)-z=0
$$

and regard S as a level surface (with $k=0$) of F.

TANGENT PLANES

Then,

$$
\begin{aligned}
& F_{x}\left(x_{0}, y_{0}, z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) \\
& F_{y}\left(x_{0}, y_{0}, z_{0}\right)=f_{y}\left(x_{0}, y_{0}\right) \\
& F_{z}\left(x_{0}, y_{0}, z_{0}\right)=-1
\end{aligned}
$$

TANGENT PLANES

So, Equation 19 becomes:

$$
\begin{aligned}
& f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
&-\left(z-z_{0}\right)=0
\end{aligned}
$$

- This is equivalent to Equation 2 in Section 10.4

TANGENT PLANES

Thus, our new, more general, definition of a tangent plane is consistent with the definition that was given for the special case of Section 10.4

TANGENT PLANES

Example 8

Find the equations of the tangent plane and normal line at the point $(-2,1,-3)$ to the ellipsoid

$$
\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3
$$

TANGENT PLANES

Example 8

The ellipsoid is the level surface
(with $k=3$) of the function

$$
F(x, y, z)=\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}
$$

Example 8

So, we have:

$$
\begin{aligned}
& F_{x}(x, y, z)=\frac{x}{2} \\
& F_{y}(x, y, z)=2 y \\
& F_{z}(x, y, z)=\frac{2 z}{9} \\
& F_{x}(-2,1,-3)=-1 \\
& F_{y}(-2,1,-3)=2 \\
& F_{z}(-2,1,-3)=-\frac{2}{3}
\end{aligned}
$$

TANGENT PLANES

Example 8
Then, Equation 19 gives the equation of the tangent plane at $(-2,1,-3)$ as:

$$
-1(x+2)+2(y-1)-\frac{2}{3}(z+3)=0
$$

- This simplifies to:

$$
3 x-6 y+2 z+18=0
$$

TANGENT PLANES

Example 8

By Equation 20, symmetric equations of the normal line are:

$$
\frac{x+2}{-1}=\frac{y-1}{2}=\frac{z+3}{-\frac{2}{3}}
$$

TANGENT PLANES

The figure shows the ellipsoid, tangent plane, and normal line in Example 8.

Example 8

SIGNIFICANCE OF GRADIENT VECTOR

 We now summarize the ways in which the gradient vector is significant.
SIGNIFICANCE OF GRADIENT VECTOR

We first consider a function f of three variables and a point $P\left(x_{0}, y_{0}, z_{0}\right)$ in its domain.

SIGNIFICANCE OF GRADIENT VECTOR

On the one hand, we know from Theorem 15 that the gradient vector $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ gives the direction of fastest increase of f.

SIGNIFICANCE OF GRADIENT VECTOR

On the other hand, we know that
$\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is orthogonal to the level surface S of f through P.

SIGNIFICANCE OF GRADIENT VECTOR

These two properties are quite compatible intuitively.

- As we move away from P on the level surface S, the value of f does not change at all.

SIGNIFICANCE OF GRADIENT VECTOR

So, it seems reasonable that, if we move in the perpendicular direction, we get the maximum increase.

SIGNIFICANCE OF GRADIENT VECTOR

In like manner, we consider a function f of two variables and a point $P\left(x_{0}, y_{0}\right)$ in its domain.

SIGNIFICANCE OF GRADIENT VECTOR

Again, the gradient vector $\nabla f\left(x_{0}, y_{0}\right)$ gives the direction of fastest increase of f.

SIGNIFICANCE OF GRADIENT VECTOR

Also, by considerations similar to our discussion of tangent planes, it can be shown that:

- $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the level curve $f(x, y)=k$ that passes through P.

SIGNIFICANCE OF GRADIENT VECTOR Again, this is intuitively plausible.

- The values of f remain constant as we move along the curve.

SIGNIFICANCE OF GRADIENT VECTOR

Now, we consider a topographical map of a hill.

Let $f(x, y)$ represent the height above sea level at a point with coordinates (x, y).

SIGNIFICANCE OF GRADIENT VECTOR

Then, a curve of steepest ascent can be drawn by making it perpendicular to all of the contour lines.

SIGNIFICANCE OF GRADIENT VECTOR

This phenomenon can also be noticed in this figure in Section 10.1, where Lonesome Creek follows a curve of steepest descent.

SIGNIFICANCE OF GRADIENT VECTOR

Computer algebra systems have commands that plot sample gradient vectors.

Each gradient vector $\nabla f(a, b)$ is plotted starting at the point (a, b).

GRADIENT VECTOR FIELD

The figure shows such a plot-called

 a gradient vector field-for the function $f(x, y)=x^{2}-y^{2}$superimposed on a contour map of f.

SIGNIFICANCE OF GRADIENT VECTOR

As expected,

the gradient vectors:

- Point "uphill"
- Are perpendicular to the level curves

