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11.6 

Directional Derivatives  

and the Gradient Vector 

In this section, we will learn how to find: 

The rate of changes of a function of  

two or more variables in any direction. 



INTRODUCTION 

This weather map shows a contour map  

of the temperature function T(x, y)  

for: 

 

 The states of California  

and Nevada at 3:00 PM  

on a day in October.  



INTRODUCTION 

The level curves, or isothermals,  

join locations with the same  

temperature. 



The partial derivative Tx is the rate of change 

of temperature with respect to distance if  

we travel east from Reno. 

 

 Ty is the rate of change  

if we travel north. 

INTRODUCTION 



However, what if we want to know the rate  

of change when we travel southeast (toward 

Las Vegas), or in some other direction? 

INTRODUCTION 



In this section, we introduce a type of 

derivative, called a directional derivative,  

that enables us to find: 

 

 The rate of change of a function of  

two or more variables in any direction. 

DIRECTIONAL DERIVATIVE 



DIRECTIONAL DERIVATIVES 

Recall that, if z = f(x, y), then the partial 

derivatives fx and fy are defined as: 
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DIRECTIONAL DERIVATIVES 

They represent the rates of change of z  

in the x- and y-directions—that is, in  

the directions of the unit vectors i and j. 

Equations 1 



DIRECTIONAL DERIVATIVES 

Suppose that we now wish to find the rate  

of change of z at (x0, y0) in the direction of  

an arbitrary unit vector u = <a, b>. 



DIRECTIONAL DERIVATIVES 

To do this, we consider the surface S  

with equation z = f(x, y) [the graph of f ]  

and we let z0 = f(x0, y0). 

  

Then, the point P(x0, y0, z0) lies on S. 



DIRECTIONAL DERIVATIVES 

The vertical plane that passes through P  

in the direction of u intersects S in  

a curve C. 



DIRECTIONAL DERIVATIVES 

The slope of the tangent line T to C  

at the point P is the rate of change of z  

in the direction  

of u. 



DIRECTIONAL DERIVATIVES 

Now, let: 

 

 Q(x, y, z) be  

another point  

on C. 

 

 P’, Q’ be the  

projections of  

P, Q on the  

xy-plane. 



DIRECTIONAL DERIVATIVES 

Then, the vector           is parallel to u. 

 

So,  

 

 

 

for some scalar h. 
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DIRECTIONAL DERIVATIVES 

Therefore,  

    

   x – x0 = ha 

 

   y – y0 = hb 



DIRECTIONAL DERIVATIVES 

So,  

  x = x0 + ha 

  y = y0 + hb 
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DIRECTIONAL DERIVATIVE 

If we take the limit as h → 0, we obtain  

the rate of change of z (with respect to 

distance) in the direction of u. 

 

 This is called the directional derivative of f  

in the direction of u. 



DIRECTIONAL DERIVATIVE 

The directional derivative of f at (x0, y0)  

in the direction of a unit vector u = <a, b>  

is:  

 

 

 

 

if this limit exists. 

Definition 2 
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DIRECTIONAL DERIVATIVES 

Comparing Definition 2 with Equations 1, 

we see that:  

 

 If u = i = <1, 0>, then Di f = fx.   

 

 If u = j = <0, 1>, then Dj f = fy. 



DIRECTIONAL DERIVATIVES 

In other words, the partial derivatives of f 

with respect to x and y are just special 

cases of the directional derivative. 



DIRECTIONAL DERIVATIVES 

Use this weather map to estimate the value  

of the directional derivative of the temperature 

function at Reno in  

the southeasterly  

direction. 

Example 1 



DIRECTIONAL DERIVATIVES 

The unit vector directed toward  

the southeast is:  

    u = (i – j)/      

 

 

However, we won’t need to use  

this expression. 

Example 1 

2



DIRECTIONAL DERIVATIVES 

We start by drawing a line through Reno 

toward the southeast. 

Example 1 



DIRECTIONAL DERIVATIVES 

We approximate the directional derivative 

DuT by: 

 

 The average rate  

of change of the  

temperature  

between the points  

where this line  

intersects the  

isothermals  

T = 50 and T = 60. 

Example 1 



DIRECTIONAL DERIVATIVES 

The temperature at the point southeast  

of Reno is T = 60°F. 

 

The temperature  

at the point  

northwest of Reno  

is T = 50°F. 

Example 1 



DIRECTIONAL DERIVATIVES 

The distance between these points  

looks to be about 75 miles. 

Example 1 



DIRECTIONAL DERIVATIVES 

So, the rate of change of the temperature  

in the southeasterly direction is: 

Example 1 
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DIRECTIONAL DERIVATIVES 

When we compute the directional  

derivative of a function defined by  

a formula, we generally use the following 

theorem. 



DIRECTIONAL DERIVATIVES 

If f is a differentiable function of x and y,  

then f has a directional derivative in  

the direction of any unit vector u = <a, b>  

and 

Theorem 3 

( , ) ( , ) ( , )x yD f x y f x y a f x y b 
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DIRECTIONAL DERIVATIVES 

If we define a function g of the single  

variable h by 

 

 

then, by the definition of a derivative,  

we have the following equation. 

Proof 

0 0( ) ( , )  g h f x ha y hb



DIRECTIONAL DERIVATIVES 

  

Proof—Equation 4   
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DIRECTIONAL DERIVATIVES 

On the other hand, we can write:  

    

   g(h) = f(x, y)  

 

where:  

 x = x0 + ha 

 y = y0 + hb 

Proof 



DIRECTIONAL DERIVATIVES 

Hence, the Chain Rule (Theorem 2  

in Section 10.5) gives: 
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DIRECTIONAL DERIVATIVES 

If we now put h = 0,  

then    x = x0 

    y = y0  

and 

0 0 0 0'(0) ( , ) ( , ) x yg f x y a f x y b

Proof—Equation 5   



DIRECTIONAL DERIVATIVES 

Comparing Equations 4 and 5,  

we see that: 

Proof 
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DIRECTIONAL DERIVATIVES 

Suppose the unit vector u makes  

an angle θ with the positive x-axis, as 

shown. 



DIRECTIONAL DERIVATIVES 

Then, we can write  

   u = <cos θ, sin θ>  

and the formula in Theorem 3  

becomes: 

Equation 6 

( , ) ( , )cos ( , )sinx yD f x y f x y f x y  
u



DIRECTIONAL DERIVATIVES 

Find the directional derivative Duf(x, y)  

if: 

 f(x, y) = x3 – 3xy + 4y2 

 u is the unit vector given by angle θ = π/6  

 

What is Duf(1, 2)? 

Example 2 



DIRECTIONAL DERIVATIVES 

Formula 6 gives: 

Example 2 
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DIRECTIONAL DERIVATIVES 

Therefore, 

Example 2 
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DIRECTIONAL DERIVATIVES 

The directional derivative Du f(1, 2)  

in Example 2 represents the rate of  

change of z in the direction of u. 



DIRECTIONAL DERIVATIVES 

This is the slope of the tangent line to  

the curve of intersection of the surface  

   z = x3 – 3xy + 4y2  

and the vertical  

plane through  

(1, 2, 0) in the  

direction of u  

shown here. 



THE GRADIENT VECTOR 

Notice from Theorem 3 that the directional 

derivative can be written as the dot product  

of two vectors: 
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THE GRADIENT VECTOR 

The first vector in that dot product  

occurs not only in computing directional 

derivatives but in many other contexts  

as well. 



THE GRADIENT VECTOR 

So, we give it a special name:  

 
 The gradient of f 

 

We give it a special notation too: 

 

 grad f or    f , which is read “del f ”  



THE GRADIENT VECTOR 

If f is a function of two variables x and y,  

then the gradient of f is the vector function    f 

defined by: 
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THE GRADIENT VECTOR 

If f(x, y) = sin x + exy,  

then 

Example 3 
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THE GRADIENT VECTOR 

With this notation for the gradient vector, we 

can rewrite Expression 7 for the directional 

derivative as: 

 

 

 This expresses the directional derivative  

in the direction of u as the scalar projection  

of the gradient vector onto u. 

Equation 9 

( , ) ( , )D f x y f x y 
u

u



THE GRADIENT VECTOR 

Find the directional derivative of the function  

    

  f(x, y) = x2y3 – 4y  

 

at the point (2, –1) in the direction  

of the vector v = 2 i + 5 j. 

Example 4 



THE GRADIENT VECTOR 

We first compute the gradient vector  

at (2, –1): 

Example 4 
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THE GRADIENT VECTOR 

Note that v is not a unit vector. 

 

However, since    , the unit vector  

in the direction of v is: 

Example 4 
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THE GRADIENT VECTOR 

Therefore, by Equation 9,  

we have: 

Example 4 
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FUNCTIONS OF THREE VARIABLES 

For functions of three variables, we can 

define directional derivatives in a similar 

manner. 

 

 Again, Du f(x, y, z) can be interpreted as the rate  

of change of the function in the direction of a unit  

vector u. 



The directional derivative of f at (x0, y0, z0)  

in the direction of a unit vector u = <a, b, c>  

is:  

 

 

 

 

if this limit exists. 

THREE-VARIABLE FUNCTION Definition 10 

0 0 0

0 0 0 0 0 0

0

( , , )

( , , ) ( , , )
lim
h

D f x y z

f x ha y hb z hc f x y z

h

   


u



If we use vector notation, then we can  

write both Definitions 2 and 10 of the 

directional derivative in a compact form,  

as follows. 

THREE-VARIABLE FUNCTIONS 



 

 

 

 

 

THREE-VARIABLE FUNCTIONS Equation 11 
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where:  

 x0 = <x0, y0> if n = 2 

 x0 = <x0, y0, z0> if n = 3 



This is reasonable. 
 

 

 The vector equation of the line through x0  

in the direction of the vector u is given by  

x = x0 + t u (Equation 1 in Section 12.5). 

 

 Thus, f(x0 + hu) represents the value of f  

at a point on this line. 

THREE-VARIABLE FUNCTIONS 



If f(x, y, z) is differentiable and u = <a, b, c>, 

then the same method that was used to  

prove Theorem 3 can be used to show  

that: 

THREE-VARIABLE FUNCTIONS Formula 12 
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THREE-VARIABLE FUNCTIONS 

For a function f of three variables,  

the gradient vector, denoted by       or grad f, 

is:  

f

( , , )
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THREE-VARIABLE FUNCTIONS 

For short, 
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THREE-VARIABLE FUNCTIONS 

Then, just as with functions of two variables, 

Formula 12 for the directional derivative can 

be rewritten as: 

( , , ) ( , , )D f x y z f x y z 
u

u

Equation 14 



THREE-VARIABLE FUNCTIONS 

If f(x, y, z) = x sin yz, find: 

  

a. The gradient of f  

 

b. The directional derivative of f at (1, 3, 0)  

in the direction of v = i + 2 j – k. 

Example 5 



THREE-VARIABLE FUNCTIONS 

The gradient of f is: 

Example 5 a 

  

f (x, y, z)

  f
x
(x, y, z), f

y
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z
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THREE-VARIABLE FUNCTIONS 

At (1, 3, 0), we have:  

 

 

The unit vector in the direction  

of v = i + 2 j – k is: 

Example 5 b 
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THREE-VARIABLE FUNCTIONS 

Hence, Equation 14 gives: 

Example 5 
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MAXIMIZING THE DIRECTIONAL DERIVATIVE 

Suppose we have a function f of two or three 

variables and we consider all possible 

directional derivatives of f at a given point.  

 

 These give the rates of change of f  

in all possible directions. 



MAXIMIZING THE DIRECTIONAL DERIVATIVE 

We can then ask the questions:  

 

 In which of these directions does f  

change fastest? 

 

What is the maximum rate of change?  



The answers are provided by  

the following theorem. 

MAXIMIZING THE DIRECTIONAL DERIVATIVE 



Suppose f is a differentiable function of  

two or three variables.  

 

The maximum value of the directional 

derivative Duf(x) is:              

 

 It occurs when u has the same direction  

as the gradient vector 

MAXIMIZING DIRECTIONAL DERIV. Theorem 15 

| ( ) |f x

( )f x



From Equation 9 or 14, we have:  

 

 

 

 

where θ is the angle  

between       and u. 

MAXIMIZING DIRECTIONAL DERIV. Proof 

| || | cos
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D f f f

f


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u u u
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The maximum value of cos θ is 1. 

This occurs when θ = 0.  

 
 

 So, the maximum value of Du f is: 

 

 It occurs when θ = 0, that is, when u has  

the same direction as      . 

MAXIMIZING DIRECTIONAL DERIV. Proof 

| |f

f



a. If f(x, y) = xey, find the rate of change  

of f at the point P(2, 0) in the direction 

from P to Q(½, 2). 

MAXIMIZING DIRECTIONAL DERIV. Example 6 



b. In what direction does f have  

the maximum rate of change?  

 

What is this maximum rate of change? 

MAXIMIZING DIRECTIONAL DERIV. Example 6 



We first compute the gradient vector: 

MAXIMIZING DIRECTIONAL DERIV. Example 6 a 
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The unit vector in the direction of         

is                    . 

 

So, the rate of change of f in the direction  

from P to Q is: 

MAXIMIZING DIRECTIONAL DERIV. Example 6 a 
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According to Theorem 15, f increases 

fastest in the direction of the gradient 

vector                       . 

 

So, the maximum rate of change is: 

MAXIMIZING DIRECTIONAL DERIV. Example 6 b 

(2,0) 1,2f   
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Suppose that the temperature at a point  

(x, y, z) in space is given by  

  

    T(x, y, z) = 80/(1 + x2 + 2y2 + 3z2)  

 

where: 

 T is measured in degrees Celsius. 

 x, y, z is measured in meters. 

MAXIMIZING DIRECTIONAL DERIV. Example 7 



In which direction does the temperature 

increase fastest at the point (1, 1, –2)? 

 

What is the maximum rate of increase? 

MAXIMIZING DIRECTIONAL DERIV. Example 7 



MAXIMIZING DIRECTIONAL DERIV. 

The gradient of T is: 

Example 7 
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MAXIMIZING DIRECTIONAL DERIV. 

At the point (1, 1, –2), the gradient vector  

is: 

Example 7 

160
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MAXIMIZING DIRECTIONAL DERIV. 

By Theorem 15, the temperature increases 

fastest in the direction of the gradient vector 

 

 

 

 

 Equivalently, it does so in the direction of  

–i – 2 j + 6 k or the unit vector (–i – 2 j + 6 k)/      . 

Example 7 
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MAXIMIZING DIRECTIONAL DERIV. 

The maximum rate of increase is the length  

of the gradient vector: 

 

 

 

 

 Thus, the maximum rate of increase  

of temperature is: 

Example 7 
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TANGENT PLANES TO LEVEL SURFACES 

Suppose S is a surface with  

equation  

   F(x, y, z) 

 
 

 That is, it is a level surface of a function F  

of three variables. 



TANGENT PLANES TO LEVEL SURFACES 

Then, let  

   P(x0, y0, z0)  

 

be a point on S.  



Then, let C be any curve that lies on  

the surface S and passes through  

the point P. 

 

 

 Recall from Section 10.1 that the curve C  

is described by a continuous vector function  

 

   r(t) = <x(t), y(t), z(t)> 

TANGENT PLANES TO LEVEL SURFACES 



Let t0 be the parameter value 

corresponding to P. 

 

 

That is,  

   r(t0) = <x0, y0, z0> 

TANGENT PLANES TO LEVEL SURFACES 



Since C lies on S, any point (x(t), y(t), z(t)) 

must satisfy the equation of S. 

 

That is,  

   F(x(t), y(t), z(t)) = k 

Equation 16 TANGENT PLANES 



If x, y, and z are differentiable functions of t 

and F is also differentiable, then we can use 

the Chain Rule to differentiate both sides of 

Equation 16: 

TANGENT PLANES 

0
F dx F dy F dz

x dt y dt x dt

  
  
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Equation 17 



However, as  

 

and  

 

Equation 17 can be written in terms  

of a dot product as: 

TANGENT PLANES 

'( ) 0F t  r

, ,x y zF F F F   

'( ) '( ), '( ), '( )t x t y t z t  r



TANGENT PLANES 

In particular, when t = t0,  

we have:  

   r(t0) = <x0, y0, z0> 

 

So,  

0 0 0 0( , , ) '( ) 0F x y z t  r

Equation 18 



TANGENT PLANES 

Equation 18 says: 

 

 The gradient vector at P,                      ,  

is perpendicular to the tangent vector r’(t0)  

to any curve C on S  

that passes through P. 

0 0 0( , , )F x y z



TANGENT PLANES 

If                             , it is thus natural to  

define the tangent plane to the level surface 

F(x, y, z) = k at P(x0, y0, z0) as: 

 

 

 The plane that passes through P  

and has normal vector 

0 0 0( , , ) 0F x y z 

0 0 0( , , )F x y z



TANGENT PLANES 

Using the standard equation of a plane 

(Equation 7 in Section 12.5), we can write  

the equation of this tangent plane as: 

0 0 0 0 0 0 0 0

0 0 0 0

( , , )( ) ( , , )( )

( , , )( ) 0

x y

z

F x y z x x F x y z y y

F x y z z z

  

  

Equation 19 



NORMAL LINE 

The normal line to S at P is  

the line: 

 

 Passing through P 

 

 Perpendicular to the tangent plane 



TANGENT PLANES 

Thus, the direction of the normal line  

is given by the gradient vector 

0 0 0( , , )F x y z



TANGENT PLANES 

So, by Equation 3 in Section 12.5,  

its symmetric equations are: 

Equation 20 

0 0 0

0 0 0 0 0 0 0 0 0( , , ) ( , , ) ( , , )x y z

x x y y z z

F x y z F x y z F x y z

  
 



TANGENT PLANES 

Consider the special case in which  

the equation of a surface S is of the form  

    

     z = f(x, y) 

 

 

 That is, S is the graph of a function f  

of two variables. 



TANGENT PLANES 

Then, we can rewrite the equation as 

  

                 F(x, y, z) = f(x, y) – z = 0 

 

and regard S as a level surface  

(with k = 0) of F. 



TANGENT PLANES 

Then, 

0 0 0 0 0

0 0 0 0 0

0 0 0

( , , ) ( , )

( , , ) ( , )

( , , ) 1

x x

y y

z

F x y z f x y

F x y z f x y

F x y z





 



TANGENT PLANES 

So, Equation 19 becomes: 

 

 

 

 

 This is equivalent to Equation 2  

in Section 10.4 

0 0 0 0 0 0

0

( , )( ) ( , )( )

( ) 0

x yf x y x x f x y y y

z z

  

  



TANGENT PLANES 

Thus, our new, more general, definition  

of a tangent plane is consistent with  

the definition that was given for the special 

case of Section 10.4 



TANGENT PLANES 

Find the equations of the tangent plane  

and normal line at the point (–2, 1, –3)  

to the ellipsoid 

Example 8 

2 2
2 3

4 9

x z
y  



TANGENT PLANES 

The ellipsoid is the level surface  

(with k = 3) of the function 

Example 8 

2 2
2( , , )

4 9

x z
F x y z y  



TANGENT PLANES 

So, we have: 

Example 8 

2
3

( , , )
2

( , , ) 2

2
( , , )

9

( 2,1, 3) 1

( 2,1, 3) 2

( 2,1, 3)

x

y

z

x

y

z

x
F x y z

F x y z y

z
F x y z

F

F

F







   

  

   



TANGENT PLANES 

Then, Equation 19 gives the equation  

of the tangent plane at (–2, 1, –3)  

as: 

 

 

 This simplifies to:  

 

   3x – 6y + 2z + 18 = 0 

Example 8 

2
3

1( 2) 2( 1) ( 3) 0x y z      



TANGENT PLANES 

By Equation 20, symmetric equations  

of the normal line are: 

2
3

2 1 3

1 2

x y z  
 

 

Example 8 



TANGENT PLANES 

The figure shows 

the ellipsoid, 

tangent plane,  

and normal line  

in Example 8. 

Example 8 



SIGNIFICANCE OF GRADIENT VECTOR 

We now summarize the ways  

in which the gradient vector is 

significant.  



We first consider a function f of  

three variables and a point P(x0, y0, z0)  

in its domain. 

SIGNIFICANCE OF GRADIENT VECTOR 



On the one hand, we know from Theorem 15 

that the gradient vector                         gives 

the direction of fastest increase of f. 

SIGNIFICANCE OF GRADIENT VECTOR 

0 0 0( , , )f x y z



On the other hand, we know that  

         is orthogonal to the level 

surface S of f through P. 

SIGNIFICANCE OF GRADIENT VECTOR 

0 0 0( , , )f x y z



These two properties are quite 

compatible intuitively. 

 
 As we move away  

from P on the level  

surface S, the value  

of f does not change  

at all. 

SIGNIFICANCE OF GRADIENT VECTOR 



So, it seems reasonable that, if we  

move in the perpendicular direction,  

we get the maximum increase. 

SIGNIFICANCE OF GRADIENT VECTOR 



In like manner, we consider a function f 

of two variables and a point P(x0, y0)  

in its domain.  

SIGNIFICANCE OF GRADIENT VECTOR 



Again, the gradient vector                   

gives the direction of fastest increase  

of f. 

SIGNIFICANCE OF GRADIENT VECTOR 

0 0( , )f x y



Also, by considerations similar to our 

discussion of tangent planes, it can be 

shown that: 

 

                   is perpendicular to the level curve  

f(x, y) = k that passes through P. 

SIGNIFICANCE OF GRADIENT VECTOR 

0 0( , )f x y



Again, this is intuitively plausible. 

 

 

 The values of f  

remain constant  

as we move  

along the curve. 

SIGNIFICANCE OF GRADIENT VECTOR 



Now, we consider a topographical map  

of a hill.  

 

Let f(x, y) represent the height above  

sea level at a point with coordinates (x, y).  

SIGNIFICANCE OF GRADIENT VECTOR 



Then, a curve of steepest ascent can be 

drawn by making it perpendicular to all of  

the contour lines. 

SIGNIFICANCE OF GRADIENT VECTOR 



This phenomenon can also be noticed in  

this figure in Section 10.1,  

where Lonesome  

Creek follows  

a curve of steepest  

descent. 

SIGNIFICANCE OF GRADIENT VECTOR 



Computer algebra systems have commands 

that plot sample gradient vectors.  

 

Each gradient vector                 is plotted 

starting at the point (a, b). 

SIGNIFICANCE OF GRADIENT VECTOR 

( , )f a b



The figure shows such a plot—called  

a gradient vector field—for the function  

f(x, y) = x2 – y2  

superimposed on  

a contour map of f. 

GRADIENT VECTOR FIELD 



As expected,  

the gradient vectors: 

 

 Point “uphill” 

 

 Are perpendicular  

to the level curves 

SIGNIFICANCE OF GRADIENT VECTOR 


