

VECTOR FUNCTIONS

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space.

- Here, we prepare the way by developing the calculus of vector functions.

VECTOR FUNCTIONS

10.8

Derivatives and Integrals of Vector Functions

In this section, we will learn how to:
Develop the calculus of vector functions.

DERIVATIVES

The derivative \mathbf{r} ' of a vector function is defined in much the same way as for real-valued functions.

$$
\frac{d \mathbf{r}}{d t}=\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

if this limit exists.

DERIVATIVE

The geometric significance of this definition is shown as
follows.

SECANT VECTOR

If the points P and Q have position

vectors $\mathbf{r}(t)$ and $\mathbf{r}(t+h)$, then $\overrightarrow{P Q}$ represents the vector $\mathbf{r}(t+h)-\mathbf{r}(t)$.

- This can therefore be regarded as a secant vector.

DERIVATIVES

If $h>0$, the scalar multiple $(1 / h)(\mathbf{r}(t+h)-\mathbf{r}(t))$ has the same direction as $\mathbf{r}(t+h)-\mathbf{r}(t)$.

- As $h \rightarrow 0$, it appears that this vector approaches a vector that lies on the tangent line.

TANGENT VECTOR

For this reason, the vector $\mathbf{r}^{3}(t)$ is called the tangent vector to the curve defined by \mathbf{r} at the point P, provided:

- $r^{\prime}(t)$ exists
- $r^{\prime}(t) \neq 0$

TANGENT LINE

The tangent line to C at P is defined to be the line through P parallel to the tangent vector $\mathbf{r}^{\prime}(t)$.

UNIT TANGENT VECTOR

We will also have occasion to consider the unit tangent vector:

$$
T(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

DERIVATIVES

The following theorem gives us a convenient method for computing the derivative of a vector function \mathbf{r} :

- Just differentiate each component of r.

If $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are differentiable functions, then:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle \\
& =f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k}
\end{aligned}
$$

DERIVATIVES

Proof

$$
\begin{aligned}
& \mathbf{r}^{\prime}(t) \\
& =\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}[\mathbf{r}(t+\Delta t)-\mathbf{r}(t)] \\
& =\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}[\langle f(t+\Delta t), g(t+\Delta t), h(t+\Delta t),\rangle-\langle f(t), g(t), h(t)\rangle] \\
& =\lim _{\Delta t \rightarrow 0}\left\langle\frac{f(t+\Delta t)-f(t)}{\Delta t}, \frac{g(t+\Delta t)-g(t)}{\Delta t}, \frac{h(t+\Delta t)-h(t)}{\Delta t}\right\rangle \\
& =\left\langle\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}, \lim _{\Delta t \rightarrow 0} \frac{g(t+\Delta t)-g(t)}{\Delta t}, \lim _{\Delta t \rightarrow 0} \frac{h(t+\Delta t)-h(t)}{\Delta t}\right\rangle \\
& =\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle
\end{aligned}
$$

DERIVATIVES
 Example 1

a. Find the derivative of

$$
\mathbf{r}(t)=\left(1+t^{3}\right) \mathbf{i}+t e^{-t} \mathbf{j}+\sin 2 t \mathbf{k}
$$

b. Find the unit tangent vector at the point where $t=0$.

DERIVATIVES
 Example 1 a

According to Theorem 2, we differentiate each component of r:

$$
\mathbf{r}^{\prime}(t)=3 t^{2} \mathbf{i}+(1-t) e^{-t} \mathbf{j}+2 \cos 2 t \mathbf{k}
$$

Example 1 b

As $\mathbf{r}(0)=\mathbf{i}$ and $\mathbf{r}^{\prime}(0)=\mathbf{j}+2 \mathbf{k}$, the unit tangent vector at the point $(1,0,0)$ is:

$$
\begin{aligned}
\mathbf{T}(0)=\frac{\mathbf{r}^{\prime}(0)}{\left|\mathbf{r}^{\prime}(0)\right|} & =\frac{\mathbf{j}+2 \mathbf{k}}{\sqrt{1+4}} \\
& =\frac{1}{\sqrt{5}} \mathbf{j}+\frac{2}{\sqrt{5}} \mathbf{k}
\end{aligned}
$$

DERIVATIVES
 Example 2

For the curve $\mathbf{r}(t)=\sqrt{t} \mathbf{i}+(2-t) \mathbf{j}$,
find $\mathbf{r}^{\prime}(t)$ and sketch the position vector $\mathbf{r}(1)$ and the tangent vector $\mathbf{r}^{\prime}(1)$.

DERIVATIVES

Example 2

We have:

$$
\mathbf{r}^{\prime}(t)=\frac{1}{2 \sqrt{t}} \mathbf{i}-\mathbf{j}
$$

and

$$
\mathbf{r}^{\prime}(1)=\frac{1}{2} \mathbf{i}-\mathbf{j}
$$

The curve is a plane curve.

Elimination of the parameter from the equations $x=\sqrt{t}, y=2-t$ gives:

$$
y=2-x^{2}, \quad x \geq 0
$$

DERIVATIVES

Example 2

The position vector $\mathbf{r}(1)=\mathbf{i}+\mathbf{j}$ starts at the origin.

The tangent vector $r^{3}(1)$ starts at the corresponding point $(1,1)$.

DERIVATIVES

Example 3

Find parametric equations for the tangent line to the helix with parametric equations

$$
x=2 \cos t \quad y=\sin t \quad z=t
$$

at the point $(0,1, \pi / 2)$.

DERIVATIVES
 Example 3

The vector equation of the helix is:

$$
\mathbf{r}(t)=\langle 2 \cos t, \sin t, t\rangle
$$

Thus,

$$
\mathbf{r}^{\prime}(t)=\langle-2 \sin t, \cos t, 1\rangle
$$

DERIVATIVES

Example 3

The parameter value corresponding to the point $(0,1, \pi / 2)$ is $t=\pi / 2$.

- So, the tangent vector there is:

$$
\mathbf{r}^{\prime}(\pi / 2)=\langle-2,0,1\rangle
$$

DERIVATIVES
 Example 3

The tangent line is the line through $(0,1, \pi / 2)$ parallel to the vector $\langle-2,0,1\rangle$.

- So, by Equations 2 in Section 10.5, its parametric equations are:

$$
x=-2 t \quad y=1 \quad z=\frac{\pi}{2}+t
$$

DERIVATIVES

The helix and the tangent line in the Example 3 are shown.

SECOND DERIVATIVE

Just as for real-valued functions,
the second derivative of a vector function \mathbf{r} is the derivative of \mathbf{r}^{\prime}, that is, $\mathbf{r}^{\prime \prime}=\left(\mathbf{r}^{\prime}\right)^{\prime}$.

- For instance, the second derivative of the function in Example 3 is:

$$
\mathbf{r}^{\prime \prime}(t)=\langle-2 \cos t, \sin t, 0\rangle
$$

DIFFERENTIATION RULES

The next theorem shows that
the differentiation formulas for real-valued functions have their counterparts for vector-valued functions.

DIFFERENTIATION RULES

Theorem 3

Suppose:

- \mathbf{u} and \mathbf{v} are differentiable vector functions
- c is a scalar
- f is a real-valued function

DIFFERENTIATION RULES

Theorem 3
Then,

1. $\frac{d}{d t}[\mathbf{u}(t)+\mathbf{v}(t)]=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)$
2. $\frac{d}{d t}[c \mathbf{u}(t)]=c \mathbf{u}^{\prime}(t)$
3. $\frac{d}{d t}[f(t) \mathbf{u}(t)]=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)$

DIFFERENTIATION RULES

Theorem 3
4. $\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)$
5. $\frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)$
6. $\frac{d}{d t}[\mathbf{u}(f(t))]=f^{\prime}(t) \mathbf{u}^{\prime}(f(t)) \quad$ (Chain Rule)

DIFFERENTIATION RULES

This theorem can be proved either:

- Directly from Definition 1
- By using Theorem 2 and the corresponding differentiation formulas for real-valued functions

DIFFERENTIATION RULES

The proof of Formula 4 follows.

- The remaining are left as exercises.

FORMULA 4

Proof

Let

$$
\begin{gathered}
\mathbf{u}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)\right\rangle \\
\mathbf{v}(t)=\left\langle g_{1}(t), g_{2}(t), g_{3}(t)\right\rangle
\end{gathered}
$$

- Then, $\mathbf{u}(t) \cdot \mathbf{v}(t)$

$$
\begin{aligned}
& =f_{1}(t) g_{1}(t)+f_{2}(t) g_{2}(t)+f_{3}(t) g_{3}(t) \\
& =\sum_{i=1}^{3} f_{i}(t) g_{i}(t)
\end{aligned}
$$

FORMULA 4

Proof

- So, the ordinary Product Rule gives:

$$
\begin{aligned}
\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)] & =\frac{d}{d t} \sum_{i=1}^{3} f_{i}(t) g_{i}(t) \\
& =\sum_{i=1}^{3} \frac{d}{d t}\left[f_{i}(t) g_{i}(t)\right] \\
& =\sum_{i=1}^{3}\left[f_{i}{ }^{\prime}(t) g_{i}(t)+f_{i}(t) g_{i}{ }^{\prime}(t)\right] \\
& =\sum_{i=1}^{3} f_{i}{ }^{\prime}(t) g_{i}(t)+\sum_{i=1}^{3} f_{i}(t) g_{i}{ }^{\prime}(t) \\
& =\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)
\end{aligned}
$$

DIFFERENTIATION RULES
 Example 4

Show that, if $|\mathbf{r}(t)|=c$ (a constant), then $\mathbf{r}^{\boldsymbol{\prime}}(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.

DIFFERENTIATION RULES

Example 4

Since

$$
\mathbf{r}(t) \cdot \mathbf{r}(t)=|\mathbf{r}(t)|^{2}=c^{2}
$$

and c^{2} is a constant,
Formula 4 of Theorem 3 gives:

$$
\begin{aligned}
0 & =\frac{d}{d t}[\mathbf{r}(t) \cdot \mathbf{r}(t)] \\
& =\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)+\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t) \\
& =2 \mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)
\end{aligned}
$$

DIFFERENTIATION RULES

Thus,

$$
\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)=0
$$

- This says that $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$.

DIFFERENTIATION RULES

Geometrically, this result says:

- If a curve lies on a sphere with center the origin, then the tangent vector $\mathbf{r}^{3}(t)$ is always perpendicular to the position vector $\mathbf{r}(t)$.

INTEGRALS

The definite integral of a continuous vector function $\mathbf{r}(t)$ can be defined in much the same way as for real-valued functions-except that the integral is a vector.

INTEGRALS

However, then, we can express the integral of \mathbf{r} in terms of the integrals of its component functions f, g, and h as follows.

INTEGRALS

$\int_{a}^{b} \mathbf{r}(t) d t$
$=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathbf{r}\left(t_{i}^{*}\right) \Delta t$
$=\lim _{n \rightarrow \infty}\left[\left(\sum_{i=1}^{n} f\left(t_{i}^{*}\right) \Delta t\right) \mathbf{i}+\left(\sum_{i=1}^{n} g\left(t_{i}^{*}\right) \Delta t\right) \mathbf{j}\right.$

$$
\left.+\left(\sum_{i=1}^{n} h\left(t_{i}^{*}\right) \Delta t\right) \mathbf{k}\right]
$$

INTEGRALS

Thus,

$$
\int_{a}^{b} \mathbf{r}(t) d t
$$

$=\left(\int_{a}^{b} f(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} g(t) d t\right) \mathbf{j}+\left(\int_{a}^{b} h(t) d t\right) \mathbf{k}$

- This means that we can evaluate an integral of a vector function by integrating each component function.

INTEGRALS

We can extend the Fundamental Theorem of Calculus to continuous vector functions:

$$
\left.\int_{\mathrm{a}}^{\mathrm{b}} \mathbf{r}(\mathrm{t}) d t=\mathbf{R}(t)\right]_{a}^{b}=\mathbf{R}(b)-\mathbf{R}(a)
$$

- Here, \mathbf{R} is an antiderivative of \mathbf{r}, that is, $\mathbf{R}^{\prime}(t)=\mathbf{r}(t)$.
- We use the notation $\int \mathbf{r}(t) d t$ for indefinite integrals (antiderivatives).

INTEGRALS

Example 5

If $\mathbf{r}(t)=2 \cos t \mathbf{i}+\sin t \mathbf{j}+2 t \mathbf{k}$, then

$$
\begin{aligned}
\int \mathbf{r}(t) d t & =\left(\int 2 \cos t d t\right)+\left(\int \sin t d t\right) \mathbf{j}+\left(\int 2 t d t\right) \mathbf{k} \\
& =2 \sin t \mathbf{i}-\cos t \mathbf{j}+t^{2} \mathbf{k}+\mathbf{C}
\end{aligned}
$$

where:

- C is a vector constant of integration
- $\int_{0}^{\pi / 2} \mathbf{r}(t) d t=\left[2 \sin t \mathbf{i}-\cos t \mathbf{j}+t^{2} \mathbf{k}\right]_{0}^{\pi / 2}$

$$
=2 \mathbf{i}+\mathbf{j}+\frac{\pi^{2}}{4} \mathbf{k}
$$

