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VECTOR FUNCTIONS 

Later in this chapter, we are going to use 

vector functions to describe the motion of 

planets and other objects through space. 

 

 

 Here, we prepare the way by developing  

the calculus of vector functions. 



10.8 

Derivatives and Integrals  

of Vector Functions 

In this section, we will learn how to: 

Develop the calculus of vector functions. 

VECTOR FUNCTIONS 



The derivative r’ of a vector function  

is defined in much the same way as for 

real-valued functions. 

DERIVATIVES 



if this limit exists.  
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Equation 1 



The geometric significance  

of this definition is shown as  

follows. 

DERIVATIVE 



If the points P and Q have position  

vectors r(t) and r(t + h), then     represents  

the vector r(t + h) – r(t). 

 

 This can therefore  

be regarded as  

a secant vector. 

SECANT VECTOR 

PQ



If h > 0, the scalar multiple (1/h)(r(t + h) – r(t)) 

has the same direction as r(t + h) – r(t). 

 

 

 As h → 0, it appears  

that this vector  

approaches a vector  

that lies on the  

tangent line.  

DERIVATIVES 



For this reason, the vector r’(t) is called  

the tangent vector to the curve defined by r  

at the point P,  

provided: 

 

 r’(t) exists 

 r’(t) ≠ 0 

TANGENT VECTOR 



The tangent line to C at P is defined to be  

the line through P parallel to the tangent 

vector r’(t). 

TANGENT LINE 



We will also have occasion to consider  

the unit tangent vector: 

UNIT TANGENT VECTOR 
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The following theorem gives us  

a convenient method for computing  

the derivative of a vector function r:  

 

 Just differentiate each component of r.  

DERIVATIVES 



If r(t) = ‹f(t), g(t), h(t)› = f(t) i + g(t) j + h(t) k, 

where f, g, and h are differentiable functions, 

then:  

  r’(t) = ‹f’(t), g’(t), h’(t)›  

         =  f’(t) i + g’(t) j + h’(t) k 

DERIVATIVES Theorem 2 



DERIVATIVES Proof 
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a. Find the derivative of  

     r(t) = (1 + t3) i + te–t j + sin 2t k 

 

b. Find the unit tangent vector at the point 

where t = 0. 

DERIVATIVES Example 1 



According to Theorem 2, we differentiate  

each component of r: 

 

r’(t) = 3t2 i + (1 – t)e–t j + 2 cos 2t k 

DERIVATIVES Example 1 a 



As r(0) = i and r’(0) = j + 2k, the unit tangent 

vector at the point (1, 0, 0) is:   

DERIVATIVES Example 1 b 
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For the curve            ,  

find r’(t) and sketch the position vector r(1) 

and the tangent vector r’(1). 

DERIVATIVES Example 2 
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We have: 

 

 

and 

DERIVATIVES Example 2 
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The curve is a plane curve. 

 

Elimination of the parameter from  

the equations    , y = 2 – t gives: 

    

   y = 2 – x2,     x ≥ 0   

DERIVATIVES Example 2 

x t



The position vector r(1) = i + j starts  

at the origin. 

The tangent vector r’(1)  

starts at the  

corresponding point  

(1, 1).  

DERIVATIVES Example 2 



Find parametric equations for the tangent line 

to the helix with parametric equations   

 

x = 2 cos t y = sin t      z = t 

 

at the point (0, 1, π/2). 

DERIVATIVES Example 3 



The vector equation of the helix is:  

   

  r(t) = ‹2 cos t, sin t, t› 

 

Thus,  

  r’(t) = ‹–2 sin t, cos t, 1› 

DERIVATIVES Example 3 



The parameter value corresponding to 

the point (0, 1, π/2) is t = π/2. 

 

 So, the tangent vector there is:  

 

   r’(π/2) = ‹–2, 0, 1› 

DERIVATIVES Example 3 



The tangent line is the line through  

(0, 1, π/2) parallel to the vector ‹–2, 0, 1›. 

 

 

 So, by Equations 2 in Section 10.5,  

its parametric equations are:  

DERIVATIVES 
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Example 3 



The helix and the tangent line in  

the Example 3 are shown. 

DERIVATIVES 



Just as for real-valued functions,  

the second derivative of a vector function r 

is the derivative of r’, that is, r” = (r’)’. 

 
 For instance, the second derivative  

of the function in Example 3 is:  

 

   r”(t) =‹–2 cos t, sin t, 0› 

SECOND DERIVATIVE 



The next theorem shows that  

the differentiation formulas for real-valued 

functions have their counterparts for  

vector-valued functions. 

DIFFERENTIATION RULES 



Suppose: 

 

 u and v are differentiable vector functions 

 

 c is a scalar 

 

 f is a real-valued function  

DIFFERENTIATION RULES Theorem 3 



Then, 
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DIFFERENTIATION RULES Theorem 3 
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This theorem can be proved either: 

 

 Directly from Definition 1 

 

 By using Theorem 2 and the corresponding 

differentiation formulas for real-valued functions 

DIFFERENTIATION RULES 



The proof of Formula 4 follows. 

 

 

 The remaining are left as exercises.   

DIFFERENTIATION RULES 



Let  

    u(t) = ‹f1(t), f2(t), f3(t)› 

v(t) = ‹g1(t), g2(t), g3(t)› 

 

 Then, 
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 So, the ordinary Product Rule gives: 

FORMULA 4 Proof 
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Show that, if |r(t)| = c (a constant),  

then r’(t) is orthogonal to r(t) for all t. 

DIFFERENTIATION RULES Example 4 



Since  

     r(t) ∙ r(t) = |r(t)|2 = c2  

and c2 is a constant,  

Formula 4 of Theorem 3 gives: 

DIFFERENTIATION RULES Example 4 
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Thus,  

   r’(t) ∙ r(t) = 0 

 

 

 This says that r’(t) is orthogonal to r(t). 

DIFFERENTIATION RULES 



Geometrically, this result says: 

 
 If a curve lies on a sphere with center  

the origin, then the tangent vector r’(t) is  

always perpendicular to the position vector r(t).  

DIFFERENTIATION RULES 



The definite integral of a continuous vector 

function r(t) can be defined in much the same 

way as for real-valued functions—except that 

the integral is a vector.   

INTEGRALS 



However, then, we can express  

the integral of r in terms of the integrals  

of its component functions f, g, and h  

as follows. 

 

INTEGRALS 
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Thus, 

 

 

 

 

 This means that we can evaluate an integral of a vector 

function by integrating each component function. 

INTEGRALS 
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We can extend the Fundamental Theorem  

of Calculus to continuous vector functions: 

 

 

 

 Here, R is an antiderivative of r, that is, R’(t) = r(t). 

 

 We use the notation ∫ r(t) dt for indefinite integrals 

(antiderivatives).   

INTEGRALS 
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If r(t) = 2 cos t i + sin t j + 2t k, then 

 

 

 

where:  

 C is a vector constant of integration 

   

INTEGRALS Example 5 
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