

INTRODUCTION

Properties: -direct band gap -high mobility (2000-3000 cm²/Vs -controlled band gap (less than 1.4 eV)

Application: Laser_s, fast switching system, detector,

Growth Condition

- $P_q = 50$ torr
- $N_2 = 300 \text{ sccm}$
- H₂=300 sccm
- $T_g = 560 590°C$
- DMHy/TDMAAs = 0.6 1
- TDMAAs/TMGa = 4.5

EQUATION FOR N CONCENTRATION

Bragg's law: $2d_{hkl} \sin \theta = \lambda$ $d_{hkl} = \frac{1}{\sqrt{\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}}}$

Lattice constant:

$$a_0 = a_{ll} \left(1 - \frac{c_{11}}{c_{11} - 2c_{12}} \frac{a_{ll} - a_{\perp}}{a_{ll}} \right)$$

Vegard's law:

$$x = \frac{a_0 - a_{GaN}}{a_{GaN} - a_{GaAs}}$$

XRD (004) Curve of GaN_xAs_{1-x}

XRD (115) Curve of GaN_xAs_{1-x}

Surface Morphology of GaN_xAs_{1-x} Thin Films

conclusion

- The crystalline structure of $GaN_{x}As_{1-x}$ films grown on GaAs (001) substrates by MOCVD were studied by HR-XRD measurements.
- The N concentration of GaN_xAs_{1-x} films had been calculated using Vegard's law, and it is in the range of 5 6%
- The surface morphology of GaN_xAs_{1-x} films had been studied by SEM method and it shows a good homogeneity and the growth rate of films were 0.8 - 1.6 um/h

Thank you

