BEBAN TIMBUNAN
BEBAN MERATA SEGITIGA

\[\sigma_z = \frac{q}{2\pi} \left(\frac{2x}{a} \alpha - \sin 2\beta \right) = qI_z \]
BEBAN TIMBUNAN TRAPESIUM

\[\sigma_z = \frac{q}{\pi} \left[(\alpha_1 + \alpha_2 + \alpha_3) + \frac{b}{a_1} (\alpha_1 + R\alpha_3) + \frac{x}{a_1} (\alpha_1 - R\alpha_3) \right] \]
A 3 m high embankment is to be constructed as shown in Fig. Ex. 6.11. If the unit weight of soil used in the embankment is 19.0 kN/m³, calculate the vertical stress due to the embankment loading at points \(P_1 \), \(P_2 \), and \(P_3 \).

Note: All dimensions are in metres

Figure Ex. 6.11 Vertical stresses at \(P_1 \), \(P_2 \) & \(P_3 \)

Solution

\[
q = \gamma H = 19 \times 3 = 57 \text{ kN/m}^2, \ z = 3 \text{ m}
\]

The embankment is divided into blocks as shown in Fig. Ex. 6.11 for making use of the graph given in Fig. 6.15. The calculations are arranged as follows:
Solution

\[q = \gamma H = 19 \times 3 = 57 \text{ kN/m}^2, \ z = 3 \text{ m} \]

The embankment is divided into blocks as shown in Fig. Ex. 6.11 for making use of the graph given in Fig. 6.15. The calculations are arranged as follows:

<table>
<thead>
<tr>
<th>Point</th>
<th>Block</th>
<th>(b) (m)</th>
<th>(a) (m)</th>
<th>(b/z)</th>
<th>(a/z)</th>
<th>(l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>ACEF</td>
<td>1.5</td>
<td>3</td>
<td>0.5</td>
<td>1</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>EDBF</td>
<td>4.5</td>
<td>3</td>
<td>1.5</td>
<td>1</td>
<td>0.477</td>
</tr>
<tr>
<td>(P_2)</td>
<td>AGH</td>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>0.5</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>GKDB</td>
<td>7.5</td>
<td>3</td>
<td>2.5</td>
<td>1.0</td>
<td>0.493</td>
</tr>
<tr>
<td></td>
<td>HKC</td>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>0.5</td>
<td>0.15</td>
</tr>
<tr>
<td>(P_3)</td>
<td>MLDB</td>
<td>10.5</td>
<td>3.0</td>
<td>3.5</td>
<td>1.0</td>
<td>0.498</td>
</tr>
<tr>
<td></td>
<td>MACL</td>
<td>1.5</td>
<td>3.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Stress Distribution in Soils due to Surface Loads

Vertical stress \(\sigma_z \)

At point \(P_1 \), \(\sigma_z = (0.39 + 0.477) \times 57 = 49.4 \text{ kN/m}^2 \)

At point \(P_2 \), \(\sigma_z = 0.15 \times (57/2) + 0.493 \times 57 - 0.15 \times (57/2) = 28.1 \text{ kN/m}^2 \)

At point \(P_3 \), \(\sigma_z = (0.498 - 0.39) \times 57 = 6.2 \text{ kN/m}^2 \)
METODE GRAFIS UNTUK PONDASI

(a) Significant depth of stressed zone for single footing

\[D_s \approx 1.5B \]

\[\sigma_z = 0.2q \]

(b) Effect of closely placed footings

\[D_s \approx 1.5b \]

Lines of equal vertical pressure or isobars
METODE GRAFIS UNTUK PONDASI

21 Pressure isobars based on Boussinesq equation for square and continuous footings
METODE GRAFIS UNTUK PONDASI

Pressure isobars based on Westergaard equation for square and continuous footing

23
Pressure isobars based on Boussinesq equation for uniformly loaded circular footings
BEBAN TIMBUNAN TAK HINGGA

- $\sigma_z = \gamma \times h$